Stability in Graphs and Games

Authors Tomas Brazdil, Vojtech Forejt, Antonin Kucera, Petr Novotny

Thumbnail PDF


  • Filesize: 0.53 MB
  • 14 pages

Document Identifiers

Author Details

Tomas Brazdil
Vojtech Forejt
Antonin Kucera
Petr Novotny

Cite AsGet BibTex

Tomas Brazdil, Vojtech Forejt, Antonin Kucera, and Petr Novotny. Stability in Graphs and Games. In 27th International Conference on Concurrency Theory (CONCUR 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 59, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


We study graphs and two-player games in which rewards are assigned to states, and the goal of the players is to satisfy or dissatisfy certain property of the generated outcome, given as a mean payoff property. Since the notion of mean-payoff does not reflect possible fluctuations from the mean-payoff along a run, we propose definitions and algorithms for capturing the stability of the system, and give algorithms for deciding if a given mean payoff and stability objective can be ensured in the system.
  • Games
  • Stability
  • Mean-Payoff
  • Window Objectives


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games to safety games. RAIRO - Theoretical Informatics and Applications, 36(3):261-275, 2002. Google Scholar
  2. Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, and Jean-François Raskin. Synthesis from LTL specifications with mean-payoff objectives. In Proc. of TACAS 2013, volume 7795 of LNCS, pages 169-184. Springer, 2013. Google Scholar
  3. Patricia Bouyer, Marie Duflot, Nicolas Markey, and Gabriel Renault. Measuring permissivity in finite games. In Proc. of CONCUR 2009, volume 5710 of LNCS, pages 196-210. Springer, 2009. Google Scholar
  4. Patricia Bouyer, Nicolas Markey, Jörg Olschewski, and Michael Ummels. Measuring permissiveness in parity games: Mean-payoff parity games revisited. In Proc. of ATVA 2011, volume 6996 of LNCS, pages 135-149. Springer, 2011. Google Scholar
  5. Tomáš Brázdil, Krishnendu Chatterjee, Vojtěch Forejt, and Antonín Kučera. Trading performance for stability in Markov decision processes. In Proc. of LICS 2013, pages 331-340. IEEE, 2013. Google Scholar
  6. Tomáš Brázdil, Vojtech Forejt, Antonín Kučera, and Petr Novotný. Stability in graphs and games. CoRR, abs/1604.06386, 2016. Google Scholar
  7. L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for mean-payoff games. Formal Methods in System Design, 38(2):97-118, 2010. Google Scholar
  8. Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking at mean-payoff and total-payoff through windows. Inf. Comput., 242:25-52, 2015. Google Scholar
  9. Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Mean-payoff parity games. In Proc. of LICS 2005, pages 178-187. IEEE, 2005. Google Scholar
  10. Krishnendu Chatterjee, Florian Horn, and Christof Löding. Obliging games. In Proc. of CONCUR 2010, volume 6269 of LNCS, pages 284-296. Springer, 2010. Google Scholar
  11. Krishnendu Chatterjee, Mickael Randour, and Jean-Franccois Raskin. Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica, 51:129-163, 2014. Google Scholar
  12. Krishnendu Chatterjee and Yaron Velner. Hyperplane separation technique for multidimensional mean-payoff games. In Proc. of CONCUR 2013, volume 8052 of LNCS, pages 500-515. Springer, 2013. Google Scholar
  13. Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over sliding windows. SIAM Journal on Computing, 31(6):1794-1813, 2002. Google Scholar
  14. Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Looking at mean-payoff through foggy windows. In Proc. of ATVA 2015, volume 9364 of LNCS, pages 429-445. Springer, 2015. Google Scholar
  15. Paul Hunter and Jean-François Raskin. Quantitative games with interval objectives. In Proc. of FST&TCS 2014, volume 29 of LIPIcs, pages 365-377, 2014. Google Scholar
  16. Petr Jančar and Zdeněk Sawa. A note on emptiness for alternating finite automata with a one-letter alphabet. Inf. Process. Lett., 104(5):164 - 167, 2007. Google Scholar
  17. Marcin Jurdzinski, Jeremy Sproston, and François Laroussinie. Model checking probabilistic timed automata with one or two clocks. Logical Methods in Comp. Sci., 4(3), 2008. Google Scholar
  18. Stephen Travers. The complexity of membership problems for circuits over sets of integers. Theoretical Computer Science, 369(1–3):211 - 229, 2006. Google Scholar
  19. Stephen A. Vavasis. Quadratic programming is in NP. Inf. Process. Lett., 36(2):73-77, 1990. Google Scholar
  20. Yaron Velner. Robust multidimensional mean-payoff games are undecidable. In Proc. of FOSSACS 2015, volume 9034 of LNCS, pages 312-327. Springer, 2015. Google Scholar
  21. Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Rabinovich, and Jean-Francois Raskin. The complexity of multi-mean-payoff and multi-energy games. Inf. Comput., 241:177 - 196, 2015. Google Scholar