In the Shortest Superstring problem (SS) one has to find a shortest string s containing given strings s_1,...,s_n as substrings. The problem is NP-hard, so a natural question is that of its approximability. One natural approach to approximately solving SS is the following GREEDY heuristic: repeatedly merge two strings with the largest overlap until only a single string is left. This heuristic is conjectured to be a 2-approximation, but even after 30 years since the conjecture has been posed, we are still very far from proving it. The situation is better for non-greedy approximation algorithms, where several approaches yielding 2.5-approximation (and better) are known. In this talk, we will survey the main results in the area, focusing on the fundamental ideas and intuitions.
@InProceedings{mucha:LIPIcs.CPM.2017.3, author = {Mucha, Marcin}, title = {{Shortest Superstring}}, booktitle = {28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)}, pages = {3:1--3:1}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-039-2}, ISSN = {1868-8969}, year = {2017}, volume = {78}, editor = {K\"{a}rkk\"{a}inen, Juha and Radoszewski, Jakub and Rytter, Wojciech}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2017.3}, URN = {urn:nbn:de:0030-drops-73483}, doi = {10.4230/LIPIcs.CPM.2017.3}, annote = {Keywords: shortest superstring, approximation algorithms} }
Feedback for Dagstuhl Publishing