The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word. LLS(T) denotes the length of the longest Lyndon substring of a string T. In this paper, we consider computing LLS(T') where T' is an edited string formed from T. After O(n) time and space preprocessing, our algorithm returns LLS(T') in O(log n) time for any single character edit. We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T') in O(l log sigma + log n) time for any block edit where sigma is the number of distinct characters in T. We can modify our algorithm so as to output all the longest Lyndon substrings of T' for both problems.
@InProceedings{urabe_et_al:LIPIcs.CPM.2018.19, author = {Urabe, Yuki and Nakashima, Yuto and Inenaga, Shunsuke and Bannai, Hideo and Takeda, Masayuki}, title = {{Longest Lyndon Substring After Edit}}, booktitle = {29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018)}, pages = {19:1--19:10}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-074-3}, ISSN = {1868-8969}, year = {2018}, volume = {105}, editor = {Navarro, Gonzalo and Sankoff, David and Zhu, Binhai}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2018.19}, URN = {urn:nbn:de:0030-drops-86913}, doi = {10.4230/LIPIcs.CPM.2018.19}, annote = {Keywords: Lyndon word, Lyndon factorization, Lyndon tree, Edit operation} }
Feedback for Dagstuhl Publishing