We study the approximability of the Longest Run Subsequence problem (LRS for short). For a string S = s_1 ⋯ s_n over an alphabet Σ, a run of a symbol σ ∈ Σ in S is a maximal substring of consecutive occurrences of σ. A run subsequence S' of S is a sequence in which every symbol σ ∈ Σ occurs in at most one run. Given a string S, the goal of LRS is to find a longest run subsequence S^* of S such that the length |S^*| is maximized over all the run subsequences of S. It is known that LRS is APX-hard even if each symbol has at most two occurrences in the input string, and that LRS admits a polynomial-time k-approximation algorithm if the number of occurrences of every symbol in the input string is bounded by k. In this paper, we design a polynomial-time (k+1)/2-approximation algorithm for LRS under the k-occurrence constraint on input strings. For the case k = 2, we further improve the approximation ratio from 3/2 to 4/3.
@InProceedings{asahiro_et_al:LIPIcs.CPM.2023.2, author = {Asahiro, Yuichi and Eto, Hiroshi and Gong, Mingyang and Jansson, Jesper and Lin, Guohui and Miyano, Eiji and Ono, Hirotaka and Tanaka, Shunichi}, title = {{Approximation Algorithms for the Longest Run Subsequence Problem}}, booktitle = {34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)}, pages = {2:1--2:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-276-1}, ISSN = {1868-8969}, year = {2023}, volume = {259}, editor = {Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.2}, URN = {urn:nbn:de:0030-drops-179560}, doi = {10.4230/LIPIcs.CPM.2023.2}, annote = {Keywords: Longest run subsequence problem, bounded occurrence, approximation algorithm} }
Feedback for Dagstuhl Publishing