LIPIcs.CSL.2011.112.pdf
- Filesize: 0.6 MB
- 17 pages
Complementation of finite automata on infinite words is not only a fundamental problem in automata theory, but also serves as a cornerstone for solving numerous decision problems in mathematical logic, model-checking, program analysis and verification. For Streett complementation, a significant gap exists between the current lower bound 2^{Omega(n*log(n*k))} and upper bound 2^{O(n*k*log(n*k))}, where n is the state size, k is the number of Streett pairs, and k can be as large as 2^{n}. Determining the complexity of Streett complementation has been an open question since the late 80's. In this paper we show a complementation construction with upper bound 2^{O(n*log(n)+n*k*log(k))} for k=O(n) and 2^{O(n^{2}*log(n))} for k=Omega(n), which matches well the lower bound obtained in the paper arXiv:1102.2963. We also obtain a tight upper bound 2^{O(n*log(n))} for parity complementation.
Feedback for Dagstuhl Publishing