Document Open Access Logo

The Focused Calculus of Structures

Authors Kaustuv Chaudhuri, Nicolas Guenot, Lutz Straßburger



PDF
Thumbnail PDF

File

LIPIcs.CSL.2011.159.pdf
  • Filesize: 0.99 MB
  • 15 pages

Document Identifiers

Author Details

Kaustuv Chaudhuri
Nicolas Guenot
Lutz Straßburger

Cite AsGet BibTex

Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger. The Focused Calculus of Structures. In Computer Science Logic (CSL'11) - 25th International Workshop/20th Annual Conference of the EACSL. Leibniz International Proceedings in Informatics (LIPIcs), Volume 12, pp. 159-173, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)
https://doi.org/10.4230/LIPIcs.CSL.2011.159

Abstract

The focusing theorem identifies a complete class of sequent proofs that have no inessential non-deterministic choices and restrict the essential choices to a particular normal form. Focused proofs are therefore well suited both for the search and for the representation of sequent proofs. The calculus of structures is a proof formalism that allows rules to be applied deep inside a formula. Through this freedom it can be used to give analytic proof systems for a wider variety of logics than the sequent calculus, but standard presentations of this calculus are too permissive, allowing too many proofs. In order to make it more amenable to proof search, we transplant the focusing theorem from the sequent calculus to the calculus of structures. The key technical contribution is an incremental treatment of focusing that avoids trivializing the calculus of structures. We give a direct inductive proof of the completeness of the focused calculus of structures with respect to a more standard unfocused form. We also show that any focused sequent proof can be represented in the focused calculus of structures, and, conversely, any proof in the focused calculus of structures corresponds to a focused sequent proof.
Keywords
  • focusing
  • polarity
  • calculus of structures
  • linear logic

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail