We present a game semantics for an expressive typing system for block-structured programs with late binding of variables and System F style polymorphism. As well as generic programs and abstract datatypes, this combination may be used to represent behaviour such as dynamic dispatch and method overriding. We give a denotational models for a hierarchy of programming languages based on our typing system, including variants of PCF and Idealized Algol. These are obtained by extending polymorphic game semantics to block-structured programs. We show that the categorical structure of our models can be used to give a new interpretation of dynamic binding, and establish definability properties by imposing constraints which are identical or similar to those used to characterize definability in PCF (innocence, well-bracketing, determinacy). Moreover, relaxing these can similarly allow the interpretation of side-effects (state, control, non-determinism) - we show that in particular we may obtain a fully abstract semantics of polymorphic Idealized Algol with dynamic binding by following exactly the methodology employed in the simply-typed case.
@InProceedings{laird:LIPIcs.CSL.2016.27, author = {Laird, James}, title = {{Polymorphic Game Semantics for Dynamic Binding}}, booktitle = {25th EACSL Annual Conference on Computer Science Logic (CSL 2016)}, pages = {27:1--27:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-022-4}, ISSN = {1868-8969}, year = {2016}, volume = {62}, editor = {Talbot, Jean-Marc and Regnier, Laurent}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2016.27}, URN = {urn:nbn:de:0030-drops-65671}, doi = {10.4230/LIPIcs.CSL.2016.27}, annote = {Keywords: Game semantics, denotational models, PCF, Idealized Algol} }
Feedback for Dagstuhl Publishing