Expressivity Landscape for Logics with Probabilistic Interventionist Counterfactuals

Authors Fausto Barbero , Jonni Virtema

Thumbnail PDF


  • Filesize: 0.74 MB
  • 19 pages

Document Identifiers

Author Details

Fausto Barbero
  • University of Helsinki, Finland
Jonni Virtema
  • University of Sheffield, UK

Cite AsGet BibTex

Fausto Barbero and Jonni Virtema. Expressivity Landscape for Logics with Probabilistic Interventionist Counterfactuals. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Causal multiteam semantics is a framework where probabilistic dependencies arising from data and causation between variables can be together formalized and studied logically. We discover complete characterizations of expressivity for several logics that can express probabilistic statements, conditioning and interventionist counterfactuals. The results characterize the languages in terms of families of linear equations and closure conditions that define the corresponding classes of causal multiteams. The characterizations yield a strict hierarchy of expressive power. Finally, we present some undefinability results based on the characterizations.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Probabilistic reasoning
  • Mathematics of computing → Causal networks
  • Interventionist counterfactuals
  • Multiteam semantics
  • Causation
  • Probability logic
  • Linear inequalities
  • Expressive power


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Fausto Barbero and Pietro Galliani. Embedding causal team languages into predicate logic. Annals of Pure and Applied Logic, pages 103-159, 2022. URL:
  2. Fausto Barbero and Gabriel Sandu. Interventionist counterfactuals on causal teams. In CREST 2018 Proceedings - Electronic Proceedings in Theoretical Computer Science, volume 286, pages 16-30. Open Publishing Association, January 2019. URL:
  3. Fausto Barbero and Gabriel Sandu. Team semantics for interventionist counterfactuals: observations vs. interventions. Journal of Philosophical Logic, 50:471-521, 2021. Google Scholar
  4. Fausto Barbero and Gabriel Sandu. Multiteam semantics for interventionist counterfactuals: probabilities and causation. pre-print, 2023. URL:
  5. Fausto Barbero and Jonni Virtema. Expressivity landscape for logics with probabilistic interventionist counterfactuals. CoRR, abs/2303.11993, 2023. URL:
  6. Fausto Barbero and Jonni Virtema. Strongly complete axiomatization for a logic with probabilistic interventionist counterfactuals. In Sarah Gaggl, Maria Vanina Martinez, and Magdalena Ortiz, editors, Logics in Artificial Intelligence, pages 649-664, Cham, 2023. Springer Nature Switzerland. Google Scholar
  7. Fausto Barbero and Fan Yang. Characterizing counterfactuals and dependencies over (generalized) causal teams. Notre Dame Journal of Formal Logic, 63(3), 2022. URL:
  8. Elias Bareinboim, Juan Correa, Duligur Ibeling, and Thomas Icard. On Pearl’s hierarchy and the foundations of causal inference (1st edition). In Hector Geffner, Rina Dechter, and Joseph Y. Halpern, editors, Probabilistic and Causal Inference: the Works of Judea Pearl, pages 507-556. ACM Books, 2022. Google Scholar
  9. Rachael Briggs. Interventionist counterfactuals. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 160(1):139-166, 2012. Google Scholar
  10. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Approximation and dependence via multiteam semantics. Ann. Math. Artif. Intell., 83(3-4):297-320, 2018. URL:
  11. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Probabilistic team semantics. In Flavio Ferrarotti and Stefan Woltran, editors, Foundations of Information and Knowledge Systems, pages 186-206, Cham, 2018. Springer International Publishing. Google Scholar
  12. Arnaud Durand, Juha Kontinen, and Heribert Vollmer. Expressivity and complexity of dependence logic. Dependence Logic: Theory and Applications, pages 5-32, 2016. Google Scholar
  13. David Galles and Judea Pearl. An axiomatic characterization of causal counterfactuals. Foundations of Science, 3(1):151-182, January 1998. Google Scholar
  14. Erich Grädel and Richard Wilke. Logics with multiteam semantics. ACM Trans. Comput. Log., 23(2):13:1-13:30, 2022. URL:
  15. Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem, and Jonni Virtema. Temporal team semantics revisited. In Christel Baier and Dana Fisman, editors, LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 44:1-44:13. ACM, 2022. URL:
  16. Joseph Halpern. Actual causality. MIT Press, 2016. Google Scholar
  17. Joseph Y. Halpern. Axiomatizing causal reasoning. J. Artif. Int. Res., 12(1):317-337, May 2000. Google Scholar
  18. Joseph Y. Halpern. From causal models to counterfactual structures. Review of Symbolic Logic, 6(2):305-322, 2013. URL:
  19. Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov, and Jonni Virtema. Facets of distribution identities in probabilistic team semantics. In European Conference on Logics in Artificial Intelligence, pages 304-320. Springer, 2019. Google Scholar
  20. Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni Virtema. Descriptive complexity of real computation and probabilistic independence logic. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 550-563. ACM, 2020. URL:
  21. Miika Hannula and Jonni Virtema. Tractability frontiers in probabilistic team semantics and existential second-order logic over the reals. Ann. Pure Appl. Log., 173(10):103108, 2022. URL:
  22. James J Heckman and Edward J Vytlacil. Econometric evaluation of social programs, part i: Causal models, structural models and econometric policy evaluation. Handbook of econometrics, 6:4779-4874, 2007. Google Scholar
  23. MA Hernan and J Robins. Causal Inference: What if. Boca Raton: Chapman & Hill/CRC, forthcoming. Google Scholar
  24. Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic Journal of the IGPL, 5:539-563, 1997. Google Scholar
  25. Samantha Kleinberg. A logic for causal inference in time series with discrete and continuous variables. In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 943-950. IJCAI/AAAI, 2011. URL:
  26. Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team semantics for the specification and verification of hyperproperties. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 10:1-10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL:
  27. David Lewis. Counterfactuals. Oxford: Blackwell Publishers, 1973. Google Scholar
  28. Stephen L Morgan and Christopher Winship. Counterfactuals and causal inference. Cambridge University Press, 2015. Google Scholar
  29. Milan Mossé, Duligur Ibeling, and Thomas Icard. Is causal reasoning harder than probabilistic reasoning? The Review of Symbolic Logic, pages 1-26, 2022. Google Scholar
  30. Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, NY, USA, 2000. Google Scholar
  31. Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018. Google Scholar
  32. Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning algorithms. MIT Press, 2017. Google Scholar
  33. Bernhard Schölkopf. Causality for machine learning. In Probabilistic and Causal Inference: The Works of Judea Pearl, pages 765-804. Association for Computing Machinery, 2022. Google Scholar
  34. Peter Spirtes. Directed cyclic graphical representations of feedback models. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, pages 491-498, 1995. Google Scholar
  35. Peter Spirtes, Clark Glymour, and Richard N. Scheines. Causation, Prediction, and Search, volume 81 of Lecture Notes in Statistics. Springer New York, 1993. Google Scholar
  36. Robert C. Stalnaker. A theory of conditionals. Americal Philosophical Quarterly, pages 98-112, 1968. Google Scholar
  37. Robert H Strotz and Herman OA Wold. Recursive vs. nonrecursive systems: An attempt at synthesis (part i of a triptych on causal chain systems). Econometrica: Journal of the Econometric Society, pages 417-427, 1960. Google Scholar
  38. Jouko Väänänen. Dependence Logic: A New Approach to Independence Friendly Logic, volume 70 of London Mathematical Society Student Texts. Cambridge University Press, 2007. Google Scholar
  39. Richard Wilke. On the Presburger fragment of logics with multiteam semantics. Ann. Pure Appl. Log., 173(10):103120, 2022. URL:
  40. Sewall Wright. Correlation and causation. Journal of agricultural research, 20:557-585, 1921. Google Scholar
  41. Jiji Zhang. A Lewisian logic of causal counterfactuals. Minds and Machines, 23(1):77-93, 2013. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail