Reverse Tangent Categories

Authors Geoffrey Cruttwell , Jean-Simon Pacaud Lemay



PDF
Thumbnail PDF

File

LIPIcs.CSL.2024.21.pdf
  • Filesize: 0.89 MB
  • 21 pages

Document Identifiers

Author Details

Geoffrey Cruttwell
  • Mount Allison University, Sackville, Canada
Jean-Simon Pacaud Lemay
  • Macquarie University, Sydney, Australia

Acknowledgements

The authors would like to thank Bryce Clark for pointing out [Philip J. Higgins and Kirril C. H. Mackenzie, 1993], which ties in nicely with the story of this paper, as well as Geoff Vooys for useful discussions, answering questions, and helping find references regarding Example 31.

Cite AsGet BibTex

Geoffrey Cruttwell and Jean-Simon Pacaud Lemay. Reverse Tangent Categories. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 21:1-21:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CSL.2024.21

Abstract

Previous work has shown that reverse differential categories give an abstract setting for gradient-based learning of functions between Euclidean spaces. However, reverse differential categories are not suited to handle gradient-based learning for functions between more general spaces such as smooth manifolds. In this paper, we propose a setting to handle this, which we call reverse tangent categories: tangent categories with an involution operation for their differential bundles.

Subject Classification

ACM Subject Classification
  • Theory of computation → Categorical semantics
Keywords
  • Tangent Categories
  • Reverse Tangent Categories
  • Reverse Differential Categories
  • Categorical Machine Learning

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Abbott, T. Altenkirch, and N. Ghani. Categories of Containers. Foundations of Software Science and Computation Structures, pages 28-28, 2003. URL: https://doi.org/10.1007/3-540-36576-1_2.
  2. R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Cartesian Differential Categories. Theory and Applications of Categories, 22(23):622-672, 2009. Google Scholar
  3. J. R. B. Cockett and G. S. H. Cruttwell. Differential Structure, Tangent Structure, and SDG. Applied Categorical Structures, 22(2):331-417, 2014. URL: https://doi.org/10.1007/s10485-013-9312-0.
  4. J. R. B. Cockett and G. S. H. Cruttwell. Differential Bundles and Fibrations for Tangent Categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, LIX:10-92, 2018. Google Scholar
  5. J. R. B. Cockett, G. S. H. Cruttwell, J. D. Gallagher, J.-S. P. Lemay, B. MacAdam, G. Plotkin, and D. Pronk. Reverse derivative categories. In CSL 2020, volume 152, pages 18:1-18:16, 2020. URL: https://doi.org/10.4230/LIPIcs.CSL.2020.18.
  6. J. R. B. Cockett, G. S. H. Cruttwell, and J.-S. P. Lemay. Differential Equations in a Tangent Category I: Complete Vector Fields, Flows, and Exponentials. Applied Categorical Structures, 29:773-825, 2021. URL: https://doi.org/10.1007/s10485-021-09629-x.
  7. G. Cruttwell, J. Gallagher, J.-S. P. Lemay, and D. Pronk. Monoidal Reverse Differential Categories. Mathematical Structures in Computer Science, 32(10):1313-1363, 2022. Google Scholar
  8. G. Cruttwell, J. Gallagher, and D. Pronk. Categorical Semantics of a Simple Differential Programming Language. Electronic Proceedings in Theoretical Computer Science, 333:289-310, 2021. URL: https://doi.org/10.4204/EPTCS.333.20.
  9. G. Cruttwell and J.-S. P. Lemay. Differential Bundles in Commutative Algebra and Algebraic Geometry. arXiv preprint, 2023. URL: https://arxiv.org/abs/2301.05542.
  10. G.S.H. Cruttwell, B. Gavranovic, N. Ghani, P. Wilson, and F. Zanasi. Categorical Foundations of Gradient-Based Learning. ESOP 2022, pages 1-28, 2022. URL: https://doi.org/10.1007/978-3-030-99336-8_1.
  11. B. Farb and R. K. Dennis. Noncommutative Algebra, volume 144. Springer Science & Business Media, 2012. URL: https://doi.org/10.1007/978-1-4612-0889-1.
  12. A. Grothendieck. Éléments de géométrie algébrique IV. Publications Mathématiques de l'IHÉS, 28:5-255, 1966. URL: https://doi.org/10.1007/BF02684778.
  13. Philip J. Higgins and Kirril C. H. Mackenzie. Duality for Base-Changing Morphisms of Vector Bundles, Modules, Lie Algebroids and Poisson Structures. Math. Proc. Camb. Phil. Soc., 114:471-488, 1993. URL: https://doi.org/10.1017/S0305004100071760.
  14. B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999. Google Scholar
  15. B. Jubin. The Tangent Functor Monad and Foliations. arXiv preprint, 2014. URL: https://arxiv.org/abs/1401.0940.
  16. A. Kock. The Dual Fibration in Elementary Terms. arxiv, 2015. URL: https://arxiv.org/abs/1501.01947.
  17. I. Kolar, J. Slovak, and P. Michor. Natural Operations in Differential Geometry. Springer, 1993. URL: https://doi.org/10.1007/978-3-662-02950-3.
  18. B. MacAdam. Vector Bundles and Differential Bundles in the Category of Smooth Manifolds. Applied categorical structures, 29(2):285-310, 2021. URL: https://doi.org/10.1007/s10485-020-09617-7.
  19. J. Rosickỳ. Abstract Tangent Functors. Diagrammes, 12:JR1-JR11, 1984. Google Scholar
  20. D. Spivak. Generalized Lens Categories via Functors C^op → Cat. arxiv:1908.02202, 2019. Google Scholar
  21. The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
  22. P. Wilson and F. Zanasi. Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits. In Proceedings of the 3rd Annual International Applied Category Theory Conference 2020, Cambridge, USA, 6-10th July 2020, volume 333, pages 247-260. Open Publishing Association, 2021. URL: https://doi.org/10.4204/EPTCS.333.17.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail