The Worst-Case Complexity of Symmetric Strategy Improvement

Authors Tom van Dijk , Georg Loho , Matthew T. Maat



PDF
Thumbnail PDF

File

LIPIcs.CSL.2024.24.pdf
  • Filesize: 0.84 MB
  • 19 pages

Document Identifiers

Author Details

Tom van Dijk
  • Formal Methods and Tools, University of Twente, The Netherlands
Georg Loho
  • Discrete Mathematics and Mathematical Programming, University of Twente, The Netherlands
Matthew T. Maat
  • Discrete Mathematics and Mathematical Programming, University of Twente, The Netherlands

Cite AsGet BibTex

Tom van Dijk, Georg Loho, and Matthew T. Maat. The Worst-Case Complexity of Symmetric Strategy Improvement. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CSL.2024.24

Abstract

Symmetric strategy improvement is an algorithm introduced by Schewe et al. (ICALP 2015) that can be used to solve two-player games on directed graphs such as parity games and mean payoff games. In contrast to the usual well-known strategy improvement algorithm, it iterates over strategies of both players simultaneously. The symmetric version solves the known worst-case examples for strategy improvement quickly, however its worst-case complexity remained open. We present a class of worst-case examples for symmetric strategy improvement on which this symmetric version also takes exponentially many steps. Remarkably, our examples exhibit this behaviour for any choice of improvement rule, which is in contrast to classical strategy improvement where hard instances are usually hand-crafted for a specific improvement rule. We present a generalized version of symmetric strategy iteration depending less rigidly on the interplay of the strategies of both players. However, it turns out it has the same shortcomings.

Subject Classification

ACM Subject Classification
  • Theory of computation → Logic and verification
  • Mathematics of computing → Discrete mathematics
Keywords
  • Parity game
  • Mean payoff game
  • Symmetric strategy improvement
  • Strategy improvement
  • Worst-case complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Marianne Akian, Stéphane Gaubert, and Alexander E. Guterman. Tropical polyhedra are equivalent to mean payoff games. Int. J. Algebra Comput., 22(1), 2012. URL: https://doi.org/10.1142/S0218196711006674.
  2. Henrik Björklund and Sergei G. Vorobyov. A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discret. Appl. Math., 155(2):210-229, 2007. URL: https://doi.org/10.1016/j.dam.2006.04.029.
  3. Manuel Bodirsky and Marcello Mamino. Tropically convex constraint satisfaction. Theory Comput. Syst., 62(3):481-509, 2018. URL: https://doi.org/10.1007/s00224-017-9762-0.
  4. L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J. F. Raskin. Faster algorithms for mean-payoff games. Form. Methods Syst. Des., 38(2):97-118, April 2011. URL: https://doi.org/10.1007/s10703-010-0105-x.
  5. Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding parity games in quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252-263. ACM, 2017. URL: https://doi.org/10.1145/3055399.3055409.
  6. Anne Condon. The complexity of stochastic games. Information and Computation, 96(2):203-224, 1992. URL: https://doi.org/10.1016/0890-5401(92)90048-K.
  7. Wojciech Czerwinski, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdzinski, Ranko Lazic, and Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower bounds for parity games. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2333-2349. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.142.
  8. Daniele Dell'Erba and Sven Schewe. Smaller progress measures and separating automata for parity games. Frontiers Comput. Sci., 4, 2022. URL: https://doi.org/10.3389/fcomp.2022.936903.
  9. Yann Disser, Oliver Friedmann, and Alexander V. Hopp. An exponential lower bound for zadeh’s pivot rule. Math. Program., 199(1):865-936, 2023. URL: https://doi.org/10.1007/s10107-022-01848-x.
  10. Dani Dorfman, Haim Kaplan, and Uri Zwick. A Faster Deterministic Exponential Time Algorithm for Energy Games and Mean Payoff Games. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 114:1-114:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.114.
  11. E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for the μ-calculus and its fragments. Theor. Comput. Sci., 258(1-2):491-522, 2001. URL: https://doi.org/10.1016/S0304-3975(00)00034-7.
  12. John Fearnley. Efficient parallel strategy improvement for parity games. In Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages 137-154. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-63390-9_8.
  13. John Fearnley, Sanjay Jain, Bart de Keijzer, Sven Schewe, Frank Stephan, and Dominik Wojtczak. An ordered approach to solving parity games in quasi-polynomial time and quasi-linear space. Int. J. Softw. Tools Technol. Transf., 21(3):325-349, 2019. URL: https://doi.org/10.1007/s10009-019-00509-3.
  14. Nathanaël Fijalkow, Paweł Gawrychowski, and Pierre Ohlmann. Value Iteration Using Universal Graphs and the Complexity of Mean Payoff Games. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1-34:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2020.34.
  15. Oliver Friedmann. Exponential Lower Bounds for Solving Infinitary Payoff Games and Linear Programs. PhD thesis, Ludwig Maximilians University Munich, 2011. URL: http://edoc.ub.uni-muenchen.de/13294/.
  16. Oliver Friedmann. A superpolynomial lower bound for strategy iteration based on snare memorization. Discret. Appl. Math., 161(10-11):1317-1337, 2013. URL: https://doi.org/10.1016/j.dam.2013.02.007.
  17. V. A. Gurvich, A. V. Karzanov, and L. G. Kachivan. Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical Physics, 28(5):85-91, 1988. URL: http://www.maths.lse.ac.uk/Personal/stengel/ussrGKK.pdf.
  18. Thomas Dueholm Hansen. Worst-case analysis of strategy iteration and the simplex method. PhD thesis, Aarhus University, Denmark, 2012. URL: https://pure.au.dk/portal/files/52807524/PhD_dissertation_Thomas_Dueholm_Hansen.pdf.
  19. Marcin Jurdzinski. Small progress measures for solving parity games. In STACS 2000, 17th Annual Symposium on Theoretical Aspects of Computer Science, Lille, France, February 2000, Proceedings, volume 1770 of Lecture Notes in Computer Science, pages 290-301. Springer, 2000. URL: https://doi.org/10.1007/3-540-46541-3_24.
  20. Marcin Jurdzinski and Ranko Lazic. Succinct progress measures for solving parity games. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1-9. IEEE Computer Society, 2017. URL: https://doi.org/10.1109/LICS.2017.8005092.
  21. Marcin Jurdziński, Rémi Morvan, Pierre Ohlmann, and K. S. Thejaswini. A symmetric attractor-decomposition lifting algorithm for parity games. arXiv e-prints, page arXiv:2010.08288, October 2020. URL: https://doi.org/10.48550/arXiv.2010.08288.
  22. Marcin Jurdzinski and Jens Vöge. A discrete stratety improvement algorithm for solving parity games. BRICS Report Series, 7(48), June 2000. URL: https://doi.org/10.7146/brics.v7i48.20215.
  23. Marcin Jurdziński. Deciding the winner in parity games is in up ∩ co-up. Information Processing Letters, 68(3):119-124, 1998. URL: https://doi.org/10.1016/S0020-0190(98)00150-1.
  24. Michael Luttenberger. Strategy iteration using non-deterministic strategies for solving parity games. CoRR, abs/0806.2923, 2008. URL: https://arxiv.org/abs/0806.2923.
  25. Rolf H. Möhring, Martin Skutella, and Frederik Stork. Scheduling with AND/OR precedence constraints. SIAM J. Comput., 33(2):393-415, 2004. URL: https://doi.org/10.1137/S009753970037727X.
  26. Pierre Ohlmann. Monotonic Graphs for Parity and Mean-Payoff Games. PhD thesis, University of Paris, 2021. URL: https://www.irif.fr/~ohlmann/contents/these.pdf.
  27. Pawel Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 10:1-10:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.10.
  28. Anuj Puri. Theory of hybrid systems and discrete event systems., 1995. URL: https://www.elibrary.ru/item.asp?id=5408583.
  29. Sven Schewe. An optimal strategy improvement algorithm for solving parity and payoff games. In Computer Science Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, volume 5213 of Lecture Notes in Computer Science, pages 369-384. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-87531-4_27.
  30. Sven Schewe, Ashutosh Trivedi, and Thomas Varghese. Symmetric strategy improvement. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 388-400. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47666-6_31.
  31. Tom van Dijk. Attracting tangles to solve parity games. In Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer Science, pages 198-215. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-96142-2_14.
  32. Tom van Dijk. Oink: An implementation and evaluation of modern parity game solvers. In Tools and Algorithms for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I, volume 10805 of Lecture Notes in Computer Science, pages 291-308. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-89960-2_16.
  33. Tom van Dijk. A parity game tale of two counters. In Proceedings Tenth International Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2019, Bordeaux, France, 2-3rd September 2019, volume 305 of EPTCS, pages 107-122, 2019. URL: https://doi.org/10.4204/EPTCS.305.8.
  34. Jens Vöge and Marcin Jurdziński. A discrete strategy improvement algorithm for solving parity games. In Computer Aided Verification, pages 202-215, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. Google Scholar
  35. Igor Walukiewicz. Monadic second order logic on tree-like structures. In STACS 96, 13th Annual Symposium on Theoretical Aspects of Computer Science, Grenoble, France, February 22-24, 1996, Proceedings, volume 1046 of Lecture Notes in Computer Science, pages 401-413. Springer, 1996. URL: https://doi.org/10.1007/3-540-60922-9_33.
  36. Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998. URL: https://doi.org/10.1016/S0304-3975(98)00009-7.
  37. Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor. Comput. Sci., 158(1&2):343-359, 1996. URL: https://doi.org/10.1016/0304-3975(95)00188-3.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail