An Almost Tight RMR Lower Bound for Abortable Test-And-Set

Authors Aryaz Eghbali, Philipp Woelfel



PDF
Thumbnail PDF

File

LIPIcs.DISC.2018.21.pdf
  • Filesize: 0.51 MB
  • 19 pages

Document Identifiers

Author Details

Aryaz Eghbali
  • Department of Computer Science, University of Calgary, Canada
Philipp Woelfel
  • Department of Computer Science, University of Calgary, Canada

Cite AsGet BibTex

Aryaz Eghbali and Philipp Woelfel. An Almost Tight RMR Lower Bound for Abortable Test-And-Set. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 21:1-21:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.DISC.2018.21

Abstract

We prove a lower bound of Omega(log n/log log n) for the remote memory reference (RMR) complexity of abortable test-and-set (leader election) in the cache-coherent (CC) and the distributed shared memory (DSM) model. This separates the complexities of abortable and non-abortable test-and-set, as the latter has constant RMR complexity [Wojciech Golab et al., 2010]. Golab, Hendler, Hadzilacos and Woelfel [Wojciech M. Golab et al., 2012] showed that compare-and-swap can be implemented from registers and test-and-set objects with constant RMR complexity. We observe that a small modification to that implementation is abortable, provided that the used test-and-set objects are atomic (or abortable). As a consequence, using existing efficient randomized wait-free implementations of test-and-set [George Giakkoupis and Philipp Woelfel, 2012], we obtain randomized abortable compare-and-swap objects with almost constant (O(log^* n)) RMR complexity.

Subject Classification

ACM Subject Classification
  • Theory of computation → Shared memory algorithms
Keywords
  • Abortability
  • Test-And-Set
  • Leader Election
  • Compare-and-Swap
  • RMR Complexity
  • Lower Bound

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Zahra Aghazadeh, Wojciech Golab, and Philipp Woelfel. Making objects writable. In \PODC33rd, pages 385-395, 2014. URL: http://dx.doi.org/10.1145/2611462.2611483.
  2. Zahra Aghazadeh and Philipp Woelfel. Space- and time-efficient long-lived test-and-set objects. In ØPODIS18th, pages 404-419, 2014. URL: http://dx.doi.org/10.1007/978-3-319-14472-6_27.
  3. Zahra Aghazadeh and Philipp Woelfel. Upper bounds for boundless tagging with bounded objects. In \DISC30th, pages 442-457, 2016. URL: http://dx.doi.org/10.1007/978-3-662-53426-7_32.
  4. Marcos Aguilera, Svend Frølund, Vassos Hadzilacos, Stephanie Lorraine Horn, and Sam Toueg. Abortable and query-abortable objects and their efficient implementation. In \PODC26th, pages 23-32, 2007. Google Scholar
  5. Dan Alistarh and James Aspnes. Sub-logarithmic test-and-set against a weak adversary. In \DISC25th, pages 97-109, 2011. Google Scholar
  6. Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Morteza Zadimoghaddam. Optimal-time adaptive strong renaming, with applications to counting. In \PODC30th, pages 239-248, 2011. Google Scholar
  7. Dan Alistarh, James Aspnes, Seth Gilbert, and Rachid Guerraoui. The complexity of renaming. In \FOCS52nd, pages 718-727, 2011. URL: http://dx.doi.org/10.1109/FOCS.2011.66.
  8. Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui. Fast randomized test-and-set and renaming. In \DISC24th, pages 94-108, 2010. Google Scholar
  9. James H. Anderson and Yong-Jik Kim. Adaptive mutual exclusion with local spinning. In \DISC14th, pages 29-43, 2000. Google Scholar
  10. James H. Anderson and Yong-Jik Kim. An improved lower bound for the time complexity of mutual exclusion. \DistComp, 15:221-253, 2002. Google Scholar
  11. T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1:6-16, 1990. Google Scholar
  12. Hagit Attiya, Rachid Guerraoui, Danny Hendler, and Petr Kuznetsov. The complexity of obstruction-free implementations. \JACM, 56(4):24:1-24:33, 2009. URL: http://dx.doi.org/10.1145/1538902.1538908.
  13. Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR lower bounds for mutual exclusion and other problems. In \STOC40th, pages 217-226, 2008. Google Scholar
  14. Michael Bender and Seth Gilbert. Mutual exclusion with O(log²log n) amortized work. In \FOCS52nd, pages 728-737, 2011. Google Scholar
  15. Harry Buhrman, Alessandro Panconesi, Riccardo Silvestri, and Paul Vitányi. On the importance of having an identity or, is consensus really universal? Distributed Computing, 18(3):167-176, 2006. URL: http://dx.doi.org/10.1007/s00446-005-0121-z.
  16. Robert Danek and Wojciech Golab. Closing the complexity gap between FCFS mutual exclusion and mutual exclusion. Distributed Computing, 23(2):87-111, 2010. URL: http://dx.doi.org/10.1007/s00446-010-0096-2.
  17. Robert Danek and Hyonho Lee. Brief announcement: Local-spin algorithms for abortable mutual exclusion and related problems. In \DISC22nd, pages 512-513, 2008. URL: http://dx.doi.org/10.1007/978-3-540-87779-0_41.
  18. E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications of the ACM, 8:569, 1965. Google Scholar
  19. Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in shared memory algorithms. \JACM, 44(6):779-805, 1997. URL: http://dx.doi.org/10.1145/268999.269000.
  20. Wayne Eberly, Lisa Higham, and Jolanta Warpechowska-Gruca. Long-lived, fast, waitfree renaming with optimal name space and high throughput. In \DISC12th, pages 149-160, 1998. Google Scholar
  21. Aryaz Eghbali and Philipp Woelfel. An almost tight RMR lower bound for abortable test-and-set. CoRR, abs/1805.04840, 2018. URL: http://arxiv.org/abs/1805.04840.
  22. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one faulty process. \JACM, 32(2):374-382, 1985. URL: http://dx.doi.org/10.1145/3149.214121.
  23. George Giakkoupis and Philipp Woelfel. On the time and space complexity of randomized test-and-set. In \PODC31st, pages 19-28, 2012. URL: http://dx.doi.org/10.1145/2332432.2332436.
  24. George Giakkoupis and Philipp Woelfel. A tight RMR lower bound for randomized mutual exclusion. In \STOC44th, pages 983-1002, 2012. URL: http://dx.doi.org/10.1145/2213977.2214066.
  25. George Giakkoupis and Philipp Woelfel. Randomized mutual exclusion with constant amortized RMR complexity on the DSM. In \FOCS55nd, 2014. To appear. Google Scholar
  26. George Giakkoupis and Philipp Woelfel. Randomized abortable mutual exclusion with constant amortized RMR complexity on the CC model. In \PODC36th, pages 221-229, 2017. URL: http://dx.doi.org/10.1145/3087801.3087837.
  27. Wojciech Golab, Danny Hendler, and Philipp Woelfel. An O(1) RMRs leader election algorithm. \SIAMJC, 39(7):2726-2760, 2010. Google Scholar
  28. Wojciech M. Golab, Vassos Hadzilacos, Danny Hendler, and Philipp Woelfel. Constant-RMR implementations of cas and other synchronization primitives using read and write operations. In \PODC26th, pages 3-12, 2007. Google Scholar
  29. Wojciech M. Golab, Vassos Hadzilacos, Danny Hendler, and Philipp Woelfel. RMR-efficient implementations of comparison primitives using read and write operations. \DistComp, 25(2):109-162, 2012. URL: http://dx.doi.org/10.1007/s00446-011-0150-8.
  30. Danny Hendler and Philipp Woelfel. Randomized mutual exclusion in O(log N/log log N) RMRs. In \PODC28th, pages 26-35, 2009. Google Scholar
  31. Danny Hendler and Philipp Woelfel. Adaptive randomized mutual exclusion in sub-logarithmic expected time. In \PODC29th, pages 141-150, 2010. Google Scholar
  32. Danny Hendler and Philipp Woelfel. Randomized mutual exclusion with sub-logarithmic RMR-complexity. \DistComp, 24(1):3-19, 2011. URL: http://dx.doi.org/10.1007/s00446-011-0128-6.
  33. Prasad Jayanti. Adaptive and efficient abortable mutual exclusion. In \PODC22nd, pages 295-304, 2003. URL: http://dx.doi.org/10.1145/872035.872079.
  34. Prasad Jayanti, Srdjan Petrovic, and Neha Narula. Read/write based fast-path transformation for FCFS mutual exclusion. In \SOFSEM31st, pages 209-218, 2005. Google Scholar
  35. Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. In \DISC15th, pages 1-15, 2001. Google Scholar
  36. Yong-Jik Kim and James H. Anderson. Nonatomic mutual exclusion with local spinning. \DistComp, 19(1):19-61, 2006. URL: http://dx.doi.org/10.1007/s00446-006-0003-z.
  37. Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient synchronization on multiprocessors with shared memory. \TOPLAS, 10(4):579-601, 1988. URL: http://dx.doi.org/10.1145/48022.48024.
  38. Hyonho Lee. Transformations of mutual exclusion algorithms from the cache-coherent model to the distributed shared memory model. In \ICDCS25th, pages 261-270, 2005. URL: http://dx.doi.org/10.1109/ICDCS.2005.83.
  39. Hyonho Lee. Fast local-spin abortable mutual exclusion with bounded space. In ØPODIS14th, pages 364-379, 2010. URL: http://dx.doi.org/10.1007/978-3-642-17653-1_27.
  40. Hyonho Lee. Local-spin Abortable Mutual Exclusion. PhD thesis, University of Toronto, 2011. Google Scholar
  41. Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, and Paul M. B. Vitányi. Randomized naming using wait-free shared variables. Distributed Computing, 11(3):113-124, 1998. Google Scholar
  42. Abhijeet Pareek and Philipp Woelfel. RMR-efficient randomized abortable mutual exclusion. In \DISC26th, pages 267-281, 2012. URL: http://dx.doi.org/10.1007/978-3-642-33651-5_19.
  43. Michael L Scott. Non-blocking timeout in scalable queue-based spin locks. In Proceedings of the twenty-first annual symposium on Principles of distributed computing, pages 31-40. ACM, 2002. Google Scholar
  44. Paul Turán. Eine extremalaufgabe aus der graphentheorie. Mat. Fiz. Lapok, 48(436-452):61, 1941. Google Scholar