Local Queuing Under Contention

Authors Pawel Garncarek, Tomasz Jurdzinski, Dariusz R. Kowalski



PDF
Thumbnail PDF

File

LIPIcs.DISC.2018.28.pdf
  • Filesize: 414 kB
  • 18 pages

Document Identifiers

Author Details

Pawel Garncarek
  • Institute of Computer Science, University of Wroclaw, Poland
Tomasz Jurdzinski
  • Institute of Computer Science, University of Wroclaw, Poland
Dariusz R. Kowalski
  • Computer Science Department, University of Liverpool, Liverpool, UK

Cite AsGet BibTex

Pawel Garncarek, Tomasz Jurdzinski, and Dariusz R. Kowalski. Local Queuing Under Contention. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.DISC.2018.28

Abstract

We study stability of local packet scheduling policies in a distributed system of n nodes. The local policies at nodes may only access their local queues, and have no other feedback from the underlying distributed system. The packets arrive at queues according to arrival patterns controlled by an adversary restricted only by injection rate rho and burstiness b. In this work, we assume that the underlying distributed system is a shared channel, in which in order to get rid of a packet from the queue, a node needs to schedule it for transmission on the channel and no other packet is scheduled for transmission at the same time. We show that there is a local adaptive scheduling policy with relatively small memory, which is universally stable on a shared channel, that is, it has bounded queues for any rho<1 and b >= 0. On the other hand, without memory the maximal stable injection rate is O(1/log n). We show a local memoryless (non-adaptive) scheduling policy based on novel idea of ultra strong selectors which is stable for slightly smaller injection c/log^2 n, for some constant c>0.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • Distributed algorithms
  • local queuing
  • shared channel
  • multiple-access channel
  • adversarial packet arrivals
  • stability
  • deterministic algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Norman M. Abramson. Development of the ALOHANET. IEEE Transactions on Information Theory, 31(2):119-123, 1985. Google Scholar
  2. Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. A lower bound for radio broadcast. Journal of Computer and System Sciences, 43(2):290-298, 1991. URL: http://dx.doi.org/10.1016/0022-0000(91)90015-W.
  3. L. Anantharamu, Bogdan S. Chlebus, and Mariusz A. Rokicki. Adversarial multiple access channel with individual injection rates. In Proceedings of the 13th International Conference on Principles of Distributed Systems (OPODIS), LNCS 5923, pages 174-188. Springer-Verlag, 2009. Google Scholar
  4. Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. Deterministic broadcast on multiple access channels. In Proceedings of the 29th IEEE International Conference on Computer Communications (INFOCOM), pages 1-5, 2010. Google Scholar
  5. Matthew Andrews, Baruch Awerbuch, Antonio Fernández, Frank Thomson Leighton, Zhiyong Liu, and Jon M. Kleinberg. Universal-stability results and performance bounds for greedy contention-resolution protocols. Journal of the ACM, 48(1):39-69, 2001. Google Scholar
  6. Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E. Leiserson. Adversarial contention resolution for simple channels. In Proceedings of the 17th Annual ACM Symposium on Parallel Algorithms (SPAA), pages 325-332, 2005. Google Scholar
  7. Marcin Bieńkowski, Marek Klonowski, Mirosław Korzeniowski, and Dariusz R. Kowalski. Dynamic sharing of a multiple access channel. In Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), pages 83-94, 2010. Google Scholar
  8. Allan Borodin, Jon M. Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P. Williamson. Adversarial queuing theory. Journal of the ACM, 48(1):13-38, 2001. Google Scholar
  9. Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. Maximum throughput of multiple access channels in adversarial environments. Distributed Computing, 22(2):93-116, 2009. Google Scholar
  10. Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. Adversarial queuing on the multiple access channel. ACM Transactions on Algorithms, 8(1):5:1-5:31, 2012. Google Scholar
  11. Jurek Czyżowicz, Leszek Gąsieniec, Dariusz R. Kowalski, and Andrzej Pelc. Consensus and mutual exclusion in a multiple access channel. In Proceedings of the 23rd International Symposium on Distributed Computing (DISC), LNCS 5805, pages 512-526. Springer-Verlag, 2009. Google Scholar
  12. Robert G. Gallager. A perspective on multiaccess channels. IEEE Transactions on Information Theory, 31(2):124-142, 1985. Google Scholar
  13. Leszek Gąsieniec, Andrzej Pelc, and David Peleg. The wakeup problem in synchronous broadcast systems. SIAM Journal on Discrete Mathematics, 14(2):207-222, 2001. Google Scholar
  14. Leslie Ann Goldberg, Mark Jerrum, Sampath Kannan, and Mike Paterson. A bound on the capacity of backoff and acknowledgment-based protocols. SIAM Journal on Computing, 33(2):313-331, 2004. Google Scholar
  15. Leslie Ann Goldberg, Philip D. MacKenzie, Mike Paterson, and Aravind Srinivasan. Contention resolution with constant expected delay. Journal of the ACM, 47(6):1048-1096, 2000. Google Scholar
  16. Albert G. Greenberg and Shmuel Winograd. A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. Journal of the ACM, 32(3):589-596, 1985. Google Scholar
  17. J. Håstad, F. T. Leighton, and B. Rogoff. Analysis of backoff protocols for multiple access channels. SIAM Journal on Computing, 25(4):740-774, 1996. Google Scholar
  18. Tomasz Jurdziński, Miroslaw Kutyłowski, and Jan Zatopiański. Efficient algorithms for leader election in radio networks. In Proceedings of the 21st ACM Symposium on Principles of Distributed Computing (PODC), pages 51-57, 2002. Google Scholar
  19. Tomasz Jurdziński and Grzegorz Stachowiak. Probabilistic algorithms for the wakeup problem in single-hop radio networks. In Proceedings of the 13th International Symposium on Algorithms and Computation (ISAAC), LNCS 2518, pages 535-549. Springer-Verlag, 2002. Google Scholar
  20. János Komlós and Albert G. Greenberg. An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Transactions on Information Theory, 31(2):302-306, 1985. Google Scholar
  21. Dariusz R. Kowalski. On selection problem in radio networks. In Proceedings of the 24th ACM Symposium on Principles of Distributed Computing (PODC), pages 158-166, 2005. Google Scholar
  22. Eyal Kushilevitz and Yishay Mansour. An Ω(D log (N/D)) lower bound for broadcast in radio networks. SIAM Journal on Computing, 27(3):702-712, 1998. Google Scholar
  23. Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local computer networks. Communications of the ACM, 19(7):395-404, 1976. Google Scholar
  24. Prabhakar Raghavan and Eli Upfal. Stochastic contention resolution with short delays. SIAM Journal on Computing, 28(2):709-719, 1998. Google Scholar
  25. Dan E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel. SIAM Journal on Computing, 15(2):468-477, 1986. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail