We propose three algorithms for the Byzantine lattice agreement problem in synchronous systems. The first algorithm runs in min {3h(X) + 6,6√{f_a} + 6}) rounds and takes O(n² min{h(X), √{f_a}}) messages, where h(X) is the height of the input lattice X, n is the total number of processes in the system, f is the maximum number of Byzantine processes such that n ≥ 3f + 1 and f_a ≤ f is the actual number of Byzantine processes in an execution. The second algorithm takes 3log n + 3 rounds and O(n² log n) messages. The third algorithm takes 4 log f + 3 rounds and O(n² log f) messages. All algorithms can tolerate f < n/3 Byzantine failures. This is the first work for the Byzantine lattice agreement problem in synchronous systems which achieves logarithmic rounds. In our algorithms, we apply a slightly modified version of the Gradecast algorithm given by Feldman et al [Feldman and Micali, 1988] as a building block. If we use the Gradecast algorithm for authenticated setting given by Katz et al [Katz and Koo, 2006], we obtain algorithms for the Byzantine lattice agreement problem in authenticated settings and tolerate f < n/2 failures.
@InProceedings{zheng_et_al:LIPIcs.DISC.2020.32, author = {Zheng, Xiong and Garg, Vijay}, title = {{Byzantine Lattice Agreement in Synchronous Message Passing Systems}}, booktitle = {34th International Symposium on Distributed Computing (DISC 2020)}, pages = {32:1--32:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-168-9}, ISSN = {1868-8969}, year = {2020}, volume = {179}, editor = {Attiya, Hagit}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.32}, URN = {urn:nbn:de:0030-drops-131106}, doi = {10.4230/LIPIcs.DISC.2020.32}, annote = {Keywords: Lattice agreement, Byzantine Failure, Gradecast} }
Feedback for Dagstuhl Publishing