Brief Announcement: Optimally-Resilient Unconditionally-Secure Asynchronous Multi-Party Computation Revisited

Author Ashish Choudhury

Thumbnail PDF


  • Filesize: 329 kB
  • 3 pages

Document Identifiers

Author Details

Ashish Choudhury
  • International Institute of Information Technology Bangalore, India

Cite AsGet BibTex

Ashish Choudhury. Brief Announcement: Optimally-Resilient Unconditionally-Secure Asynchronous Multi-Party Computation Revisited. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 44:1-44:3, Schloss Dagstuhl – Leibniz-Zentrum fΓΌr Informatik (2020)


In this paper, we present an optimally-resilient, unconditionally-secure asynchronous multi-party computation (AMPC) protocol for n parties, tolerating a computationally unbounded adversary, capable of corrupting up to t < n/3 parties. Our protocol needs a communication of π’ͺ(n⁴) field elements per multiplication gate. This is to be compared with previous best AMPC protocol (Patra et al, ICITS 2009) in the same setting, which needs a communication of π’ͺ(n⁡) field elements per multiplication gate. To design our protocol, we present a simple and highly efficient asynchronous verifiable secret-sharing (AVSS) protocol, which is of independent interest.

Subject Classification

ACM Subject Classification
  • Security and privacy β†’ Information-theoretic techniques
  • Theory of computation β†’ Distributed algorithms
  • Theory of computation β†’ Cryptographic protocols
  • Verifiable Secret-sharing
  • Secure MPC
  • Fault-tolerance
  • Byzantine faults
  • secret-sharing
  • unconditional-security
  • privacy


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In CRYPTO, volume 576 of LNCS, pages 420-432. Springer, 1991. Google Scholar
  2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In STOC, pages 1-10. ACM, 1988. Google Scholar
  3. M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous Secure Computations with Optimal Resilience. In PODC, pages 183-192. ACM, 1994. Google Scholar
  4. A. Choudhury. Optimally-resilient Unconditionally-secure Asynchronous Multi-party Computation Revisited. Cryptology ePrint Archive, Report 2020/906, 2020. Google Scholar
  5. A. Choudhury and A. Patra. An Efficient Framework for Unconditionally Secure Multiparty Computation. IEEE Trans. Information Theory, 63(1):428-468, 2017. Google Scholar
  6. O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In STOC, pages 218-229. ACM, 1987. Google Scholar
  7. A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient Statistical Asynchronous Verifiable Secret Sharing with Optimal Resilience. In ICITS, volume 5973 of LNCS, pages 74-92. Springer, 2009. Google Scholar
  8. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612-613, 1979. Google Scholar
  9. A. C. Yao. Protocols for Secure Computations. In FOCS, pages 160-164. IEEE, 1982. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail