Efficient Distribution of Quantum Circuits

Authors Ranjani G Sundaram, Himanshu Gupta, C. R. Ramakrishnan



PDF
Thumbnail PDF

File

LIPIcs.DISC.2021.41.pdf
  • Filesize: 1.82 MB
  • 20 pages

Document Identifiers

Author Details

Ranjani G Sundaram
  • Department of Computer Science, Stony Brook University, New York, NY, USA
Himanshu Gupta
  • Department of Computer Science, Stony Brook University, New York, NY, USA
C. R. Ramakrishnan
  • Department of Computer Science, Stony Brook University, New York, NY, USA

Cite AsGet BibTex

Ranjani G Sundaram, Himanshu Gupta, and C. R. Ramakrishnan. Efficient Distribution of Quantum Circuits. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 41:1-41:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.DISC.2021.41

Abstract

Quantum computing hardware is improving in robustness, but individual computers still have small number of qubits (for storing quantum information). Computations needing a large number of qubits can only be performed by distributing them over a network of smaller quantum computers. In this paper, we consider the problem of distributing a quantum computation, represented as a quantum circuit, over a homogeneous network of quantum computers, minimizing the number of communication operations needed to complete every step of the computation. We propose a two-step solution: dividing the given circuit’s qubits among the computers in the network, and scheduling communication operations, called migrations, to share quantum information among the computers to ensure that every operation can be performed locally. While the first step is an intractable problem, we present a polynomial-time solution for the second step in a special setting, and a O(log n)-approximate solution in the general setting. We provide empirical results which show that our two-step solution outperforms existing heuristic for this problem by a significant margin (up to 90%, in some cases).

Subject Classification

ACM Subject Classification
  • Computing methodologies → Distributed computing methodologies
  • Computing methodologies → Distributed algorithms
Keywords
  • Distributed Quantum Computing
  • Hypergraph Min-Cut

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Engineering a direct k-way hypergraph partitioning algorithm. In 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, 2017. Google Scholar
  2. Konstantin Andreev and Harald Racke. Balanced graph partitioning. Theory of Computing Systems, 39(6), 2006. Google Scholar
  3. P. Andres-Martinez and C. Heunen. Automated distribution of quantum circuits via hypergraph partitioning. Phys. Rev. A, 100(3), 2019. Google Scholar
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett., 70(13), 1993. Google Scholar
  5. M. Caleffi, A. S. Cacciapuoti, and G. Bianchi. Quantum internet: from communication to distributed computing!, 2018. Google Scholar
  6. Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In International Workshop on Approximation Algorithms for Combinatorial Optimization. Springer, 2000. Google Scholar
  7. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello. Distributed quantum computation over noisy channels, phys. rev. a. Phys. Rev. A, 59(4249), 1999. Google Scholar
  8. O. Daei, K. Navi, and M. Zomorodi-Moghadam. Optimized quantum circuit partitioning. Int. J. Theor. Phys., 59(12):3804-3820, 2020. Google Scholar
  9. D. Dieks. Communication by EPR devices. Physics Letters A, 92(6), 1982. URL: https://doi.org/10.1016/0375-9601(82)90084-6.
  10. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414(6862), November 2001. URL: https://doi.org/10.1038/35106500.
  11. J. Eisert, K. Jacobs, P. Papadopoulos, and M.B. Plenio. Optimal local implementation of non-local quantum gates. Phys. Rev. A, 62(052317-1), 2000. Google Scholar
  12. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J., 49(2), 1970. Google Scholar
  13. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. URL: https://doi.org/10.1017/CBO9780511976667.
  14. Qiskit. URL: https://qiskit.org/.
  15. Quipper. URL: https://www.mathstat.dal.ca/~selinger/quipper/doc.
  16. Nicolas Sangouard, Christoph Simon, Hugues De Riedmatten, and Nicolas Gisin. Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 2011. Google Scholar
  17. W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299(5886), 1982. URL: https://doi.org/10.1038/299802a0.
  18. A. Yimsiriwattana and S. J. Lomonaco Jr. Distributed quantum computing: A distributed Shor algorithm. Quantum Information and Computation II, 5436, 2004. Google Scholar
  19. A. Yimsiriwattana and S. J. Lomonaco Jr. Generalized GHZ states and distributed quantum computing. AMS Cont. Math., 381(131), 2005. Google Scholar