Fault Tolerant Coloring of the Asynchronous Cycle

Authors Pierre Fraigniaud , Patrick Lambein-Monette , Mikaël Rabie

Thumbnail PDF


  • Filesize: 0.89 MB
  • 22 pages

Document Identifiers

Author Details

Pierre Fraigniaud
  • Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
Patrick Lambein-Monette
  • Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
Mikaël Rabie
  • Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Cite AsGet BibTex

Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie. Fault Tolerant Coloring of the Asynchronous Cycle. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


We present a wait-free algorithm for proper coloring the n nodes of the asynchronous cycle C_n, where each crash-prone node starts with its (unique) identifier as input. The algorithm is independent of n ≥ 3, and runs in O(log^*n) rounds in C_n. This round-complexity is optimal thanks to a known matching lower bound, which applies even to synchronous (failure-free) executions. The range of colors used by our algorithm, namely {0,…,4}, is optimal too, thanks to a known lower bound on the minimum number of names for which renaming is solvable wait-free in shared-memory systems, whenever n is a power of a prime. Indeed, our model coincides with the shared-memory model whenever n = 3, and the minimum number of names for which renaming is possible in 3-process shared-memory systems is 5.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Mathematics of computing → Graph coloring
  • Computer systems organization → Dependable and fault-tolerant systems and networks
  • Theory of computation → Models of computation
  • graph coloring
  • LOCAL model
  • shared-memory model
  • immediate snapshot
  • renaming
  • wait-free algorithms


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-lived renaming made adaptive. In 18superscriptth ACM Symposium on Principles of Distributed Computing (PODC), pages 91-103, 1999. URL: https://doi.org/10.1145/301308.301335.
  2. Dan Alistarh, Hagit Attiya, Rachid Guerraoui, and Corentin Travers. Early deciding synchronous renaming in o(log f) rounds or less. In 19superscriptth International Colloquium on Structural Information and Communication Complexity (SIROCCO), LNCS 7355, pages 195-206. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-31104-8_17.
  3. Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming in an asynchronous environment. Journal of the ACM, 37(3):524-548, July 1990. URL: https://doi.org/10.1145/79147.79158.
  4. Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz. Bounds on the step and namespace complexity of renaming. SIAM Journal on Computing, 48(1):1-32, 2019. URL: https://doi.org/10.1137/16M1081439.
  5. Hagit Attiya and Arie Fouren. Polynominal and adaptive long-lived (2k-1)-renaming. In 14superscriptth International Conference on Distributed Computing (DISC), LNCS 1914, pages 149-163. Springer, 2000. URL: https://doi.org/10.1007/3-540-40026-5_10.
  6. Hagit Attiya and Ami Paz. Counting-based impossibility proofs for set agreement and renaming. Journal of Parallel and Distributed Computing, 87:1-12, 2016. URL: https://doi.org/10.1016/j.jpdc.2015.09.002.
  7. Hagit Attiya and Jennifer Welch. Distributed Computing. Wiley Series on Parallel and Distributed Computing. John Wiley & Sons, Inc., Hoboken, NJ, USA, April 2004. URL: https://doi.org/10.1002/0471478210.
  8. Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent Developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2013. URL: https://doi.org/10.2200/S00520ED1V01Y201307DCT011.
  9. Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (δ+ 1)-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In 37superscriptth ACM Symposium on Principles of Distributed Computing (PODC), pages 437-446, 2018. URL: https://doi.org/10.1145/3212734.3212769.
  10. Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks. In 23superscriptrd IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages 1-8, 2009. URL: https://doi.org/10.1109/IPDPS.2009.5161053.
  11. Jean R. S. Blair and Fredrik Manne. An efficient self-stabilizing distance-2 coloring algorithm. Theoretical Computer Science, 444:28-39, 2012. URL: https://doi.org/10.1016/j.tcs.2012.01.034.
  12. Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Brief Announcement: Memory Lower Bounds for Self-Stabilization. In Jukka Suomela, editor, 33rd International Symposium on Distributed Computing (DISC 2019), volume 146 of Leibniz International Proceedings in Informatics (LIPIcs), pages 37:1-37:3, Dagstuhl, Germany, 2019. Schloss Dagstuhlendash Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2019.37.
  13. Armando Castañeda, Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Michel Raynal. Making local algorithms wait-free: the case of ring coloring. Theory of Computing Systems, 63(2):344-365, 2019. URL: https://doi.org/10.1007/s00224-017-9772-y.
  14. Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renaming: the lower bound. Distributed Computing, 22(5-6):287-301, 2010. URL: https://doi.org/10.1007/s00446-010-0108-2.
  15. Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renaming: the upper bound. Journal of the ACM, 59(1):3:1-3:49, 2012. URL: https://doi.org/10.1145/2108242.2108245.
  16. Armando Castañeda, Michel Raynal, and Julien Stainer. When and how process groups can be used to reduce the renaming space. In 16superscriptth International Conference on the Principles of Distributed Systems (OPODIS), LNCS 7702, pages 91-105. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-35476-2_7.
  17. Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control, 70(1):32-53, July 1986. URL: https://doi.org/10.1016/S0019-9958(86)80023-7.
  18. Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, and Mikaël Rabie. Distributed computing in the asynchronous LOCAL model. In 21superscriptst International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), LNCS 11914, pages 105-110. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-34992-9_9.
  19. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382, April 1985. URL: https://doi.org/10.1145/3149.214121.
  20. Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In 57superscriptth IEEE Symposium on Foundations of Computer Science (FOCS), pages 625-634, 2016. URL: https://doi.org/10.1109/FOCS.2016.73.
  21. Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved distributed Δ-coloring. Distributed Computing, 34(4):239-258, 2021. URL: https://doi.org/10.1007/s00446-021-00397-4.
  22. Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela, and Jara Uitto. Improved distributed degree splitting and edge coloring. Distributed Computing, 33(3-4):293-310, 2020. URL: https://doi.org/10.1007/s00446-018-00346-8.
  23. Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized distributed coloring in CONGEST. In 53superscriptrd ACM Symposium on Theory of Computing (STOC), pages 1180-1193, 2021. URL: https://doi.org/10.1145/3406325.3451089.
  24. Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. Journal of the ACM, 46(6):858-923, November 1999. URL: https://doi.org/10.1145/331524.331529.
  25. Maurice Herlihy and Nir Shavit. On the Nature of Progress. In Antonio Fernàndez Anta, Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed Systems, pages 313-328, Berlin, Heidelberg, 2011. Springer. URL: https://doi.org/10.1007/978-3-642-25873-2_22.
  26. Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193-201, 1992. URL: https://doi.org/10.1137/0221015.
  27. Yannic Maus. Distributed Graph Coloring Made Easy. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '21, pages 362-372, New York, NY, USA, July 2021. Association for Computing Machinery. URL: https://doi.org/10.1145/3409964.3461804.
  28. Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on Computing, 24(6):1259-1277, 1995. URL: https://doi.org/10.1137/S0097539793254571.
  29. David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, USA, 2000. Google Scholar
  30. Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposition and distributed derandomization. In 52superscriptnd ACM Symposium on Theory of Computing (STOC), pages 350-363, 2020. URL: https://doi.org/10.1145/3357713.3384298.
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail