We study the problem of collaborative tree exploration introduced by Fraigniaud, Gasieniec, Kowalski, and Pelc [Pierre Fraigniaud et al., 2006] where a team of k agents is tasked to collectively go through all the edges of an unknown tree as fast as possible and return to the root. Denoting by n the total number of nodes and by D the tree depth, the 𝒪(n/log(k)+D) algorithm of [Pierre Fraigniaud et al., 2006] achieves a 𝒪(k/log(k)) competitive ratio with respect to the cost of offline exploration which is at least max{{2n/k,2D}}. Brass, Cabrera-Mora, Gasparri, and Xiao [Peter Brass et al., 2011] study an alternative performance criterion, the competitive overhead with respect to the cost of offline exploration, with their 2n/k+𝒪((D+k)^k) guarantee. In this paper, we introduce "Breadth-First Depth-Next" (BFDN), a novel and simple algorithm that performs collaborative tree exploration in 2n/k+𝒪(D²log(k)) rounds, thus outperforming [Peter Brass et al., 2011] for all values of (n,D,k) and being order-optimal for trees of depth D = o(√n). Our analysis relies on a two-player game reflecting a problem of online resource allocation that could be of independent interest. We extend the guarantees of BFDN to: scenarios with limited memory and communication, adversarial setups where robots can be blocked, and exploration of classes of non-tree graphs. Finally, we provide a recursive version of BFDN with a runtime of 𝒪_𝓁(n/k^{1/𝓁}+log(k) D^{1+1/𝓁}) for parameter 𝓁 ≥ 1, thereby improving performance for trees with large depth.
@InProceedings{cosson_et_al:LIPIcs.DISC.2023.14, author = {Cosson, Romain and Massouli\'{e}, Laurent and Viennot, Laurent}, title = {{Efficient Collaborative Tree Exploration with Breadth-First Depth-Next}}, booktitle = {37th International Symposium on Distributed Computing (DISC 2023)}, pages = {14:1--14:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-301-0}, ISSN = {1868-8969}, year = {2023}, volume = {281}, editor = {Oshman, Rotem}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.14}, URN = {urn:nbn:de:0030-drops-191409}, doi = {10.4230/LIPIcs.DISC.2023.14}, annote = {Keywords: collaborative exploration, online algorithms, trees, adversarial game, competitive analysis, robot swarms} }
Feedback for Dagstuhl Publishing