@InProceedings{peng_et_al:LIPIcs.ECRTS.2019.20,
author = {Peng, Bo and Fisher, Nathan and Chantem, Thidapat},
title = {{Fast and Effective Multiframe-Task Parameter Assignment Via Concave Approximations of Demand}},
booktitle = {31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
pages = {20:1--20:22},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-110-8},
ISSN = {1868-8969},
year = {2019},
volume = {133},
editor = {Quinton, Sophie},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.20},
URN = {urn:nbn:de:0030-drops-107578},
doi = {10.4230/LIPIcs.ECRTS.2019.20},
annote = {Keywords: generalized multiframe task model (GMF), generalized multiframe task model with parameter adaptation (GMF-PA), self-suspending tasks, uniprocessor scheduling, mixed-integer linear programming, concave approximation, linear programming}
}