LIPIcs.ESA.2016.11.pdf
- Filesize: 0.63 MB
- 17 pages
This work investigates the hardness of computing sparse solutions to systems of linear equations over F_2. Consider the k-EventSet problem: given a homogeneous system of linear equations over $\F_2$ on $n$ variables, decide if there exists a nonzero solution of Hamming weight at most k (i.e. a k-sparse solution). While there is a simple O(n^{k/2})-time algorithm for it, establishing fixed parameter intractability for k-EventSet has been a notorious open problem. Towards this goal, we show that unless \kclq can be solved in n^{o(k)} time, k-EventSet has no polynomial time algorithm when k = omega(log^2(n)). Our work also shows that the non-homogeneous generalization of the problem - which we call k-VectorSum - is W[1]-hard on instances where the number of equations is O(k*log(n)), improving on previous reductions which produced Omega(n) equations. We use the hardness of k-VectorSum as a starting point to prove the result for k-EventSet, and additionally strengthen the former to show the hardness of approximately learning k-juntas. In particular, we prove that given a system of O(exp(O(k))*log(n)) linear equations, it is W[1]-hard to decide if there is a k-sparse linear form satisfying all the equations or any function on at most k-variables (a k-junta) satisfies at most (1/2 + epsilon)-fraction of the equations, for any constant epsilon > 0. In the setting of computational learning, this shows hardness of approximate non-proper learning of k-parities. In a similar vein, we use the hardness of k-EventSet to show that that for any constant d, unless k-Clique can be solved in n^{o(k)} time, there is no poly(m,n)*2^{o(sqrt{k})} time algorithm to decide whether a given set of $m$ points in F_2^n satisfies: (i) there exists a non-trivial k-sparse homogeneous linear form evaluating to 0 on all the points, or (ii) any non-trivial degree d polynomial P supported on at most k variables evaluates to zero on approx Pr_{F_2^n}[P({z}) = 0] fraction of the points i.e., P is fooled by the set of points. Lastly, we study the approximation in the sparsity of the solution. Let the Gap-k-VectorSum problem be: given an instance of k-VectorSum of size n, decide if there exist a k-sparse solution, or every solution is of sparsity at least k' = (1+delta_0)k. Assuming the Exponential Time Hypothesis, we show that for some constants c_0, delta_0 > 0 there is no poly(n) time algorithm for Gap-k-VectorSum when k = omega((log(log( n)))^{c_0}).
Feedback for Dagstuhl Publishing