Separation of Cycle Inequalities for the Periodic Timetabling Problem

Authors Ralf Borndörfer, Heide Hoppmann, Marika Karbstein

Thumbnail PDF


  • Filesize: 485 kB
  • 13 pages

Document Identifiers

Author Details

Ralf Borndörfer
Heide Hoppmann
Marika Karbstein

Cite AsGet BibTex

Ralf Borndörfer, Heide Hoppmann, and Marika Karbstein. Separation of Cycle Inequalities for the Periodic Timetabling Problem. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 21:1-21:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem.
  • periodic timetabling
  • cycle inequalities
  • separation algorithm


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Michael Bussieck. Gams - lop.gms: Line optimization. URL:
  2. M. Kümmling, P. Großmann, K. Nachtigall, J. Opitz, and R. Weiß. A state-of-the-art realization of cyclic railway timetable computation. Public Transport, 7(3):281-293, 2015. URL:
  3. Christian Liebchen. Periodic timetable optimization in public transport. PhD thesis, Technische Universtität Berlin, 2006. Google Scholar
  4. Christian Liebchen and Rolf H. Möhring. The modeling power of the periodic event scheduling problem: Railway timetables - and beyond. In Frank Geraets, Leo Kroon, Anita Schoebel, Dorothea Wagner, and Christos D. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages 3-40. Springer Berlin Heidelberg, 2007. Google Scholar
  5. Christian Liebchen and Leon Peeters. Integral cycle bases for cyclic timetabling. Discrete Optimization, 6:98-109, 2009. Google Scholar
  6. Christian Liebchen and Elmar Swarat. The Second Chvatal Closure Can Yield Better Railway Timetables. In Matteo Fischetti and Peter Widmayer, editors, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08), volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. Google Scholar
  7. Thomas Lindner. Train Schedule Optimization in Public Rail Transport. PhD thesis, Technische Universtität Braunschweig, 2000. Google Scholar
  8. K. Nachtigall and J. Opitz. Solving periodic timetable optimisation problems by modulo simplex calculations. In Matteo Fischetti and Peter Widmayer, editors, ATMOS'08, volume 9, 2008. Google Scholar
  9. Karl Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Habilitation thesis, Universtität Hildesheim, 1998. Google Scholar
  10. Michiel A. Odijk. Construction of periodic timetables, part 1: A cutting plane algorithm. Technical Report 94-61, TU Delft, 1994. Google Scholar
  11. Leon W. P. Peeters. Cyclic Railway and Timetable Optimization. PhD thesis, Erasmus Universiteit Rotterdam, 2003. Google Scholar
  12. Alexander Schrijver. Routing and timetabling by topological search. Documenta Mathematica, Extra Volume ICM 1998:1-9, 1998. Google Scholar
  13. P. Sels, T. Dewilde, D. Cattrysse, and P. Vansteenwegen. Reducing the passenger travel time in practice by the automated construction of a robust railway timetable. Transportation Research Part B: Methodological, 84:124-156, 2016. URL:
  14. Paolo Serafini and Walter Ukovich. A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2(4):550-581, 1989. Google Scholar