For a graph F, a graph G is F-free if it does not contain an induced subgraph isomorphic to F. For two graphs G and H, an H-coloring of G is a mapping f:V(G) -> V(H) such that for every edge uv in E(G) it holds that f(u)f(v)in E(H). We are interested in the complexity of the problem H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we consider H-Coloring of F-free graphs, where F is a fixed graph and H is an odd cycle of length at least 5. This problem is closely related to the well known open problem of determining the complexity of 3-Coloring of P_t-free graphs. We show that for every odd k >= 5 the C_k-Coloring problem, even in the precoloring-extension variant, can be solved in polynomial time in P_9-free graphs. On the other hand, we prove that the extension version of C_k-Coloring is NP-complete for F-free graphs whenever some component of F is not a subgraph of a subdivided claw.
@InProceedings{chudnovsky_et_al:LIPIcs.ESA.2019.31, author = {Chudnovsky, Maria and Huang, Shenwei and Rz\k{a}\.{z}ewski, Pawe{\l} and Spirkl, Sophie and Zhong, Mingxian}, title = {{Complexity of C\underlinek-Coloring in Hereditary Classes of Graphs}}, booktitle = {27th Annual European Symposium on Algorithms (ESA 2019)}, pages = {31:1--31:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-124-5}, ISSN = {1868-8969}, year = {2019}, volume = {144}, editor = {Bender, Michael A. and Svensson, Ola and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.31}, URN = {urn:nbn:de:0030-drops-111529}, doi = {10.4230/LIPIcs.ESA.2019.31}, annote = {Keywords: homomorphism, hereditary class, computational complexity, forbidden induced subgraph} }
Feedback for Dagstuhl Publishing