Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow X on directed graph G into weighted source-to-sink paths whose superposition equals X. We focus on a common formulation of the problem where the path weights must be non-negative integers and also on a new variant where these weights can be negative. We show that, for acyclic graphs, considering the width of the graph (the minimum number of s-t paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the non-negative version, we show that a popular heuristic is a O(log |X|)-approximation (|X| being the total flow of X) on graphs satisfying two properties related to the width (satisfied by e.g., series-parallel graphs), and strengthen its worst-case approximation ratio from Ω(√m) to Ω(m / log m) for sparse graphs, where m is the number of edges in the graph. For the negative version, we give a (⌈log ║X║⌉+1)-approximation (║X║ being the maximum absolute value of X on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary flows (║X║ ≤ 1) into at most width paths. We also disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.
@InProceedings{caceres_et_al:LIPIcs.ESA.2022.31, author = {C\'{a}ceres, Manuel and Cairo, Massimo and Grigorjew, Andreas and Khan, Shahbaz and Mumey, Brendan and Rizzi, Romeo and Tomescu, Alexandru I. and Williams, Lucia}, title = {{Width Helps and Hinders Splitting Flows}}, booktitle = {30th Annual European Symposium on Algorithms (ESA 2022)}, pages = {31:1--31:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-247-1}, ISSN = {1868-8969}, year = {2022}, volume = {244}, editor = {Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.31}, URN = {urn:nbn:de:0030-drops-169695}, doi = {10.4230/LIPIcs.ESA.2022.31}, annote = {Keywords: Flow decomposition, approximation algorithms, graph width} }
Feedback for Dagstuhl Publishing