Given a graph and two vertex sets satisfying a certain feasibility condition, a reconfiguration problem asks whether we can reach one vertex set from the other by repeating prescribed modification steps while maintaining feasibility. In this setting, Mouawad et al. [IPEC 2014] presented an algorithmic meta-theorem for reconfiguration problems that says if the feasibility can be expressed in monadic second-order logic (MSO), then the problem is fixed-parameter tractable parameterized by treewidth + 𝓁, where 𝓁 is the number of steps allowed to reach the target set. On the other hand, it is shown by Wrochna [J. Comput. Syst. Sci. 2018] that if 𝓁 is not part of the parameter, then the problem is PSPACE-complete even on graphs of bounded bandwidth. In this paper, we present the first algorithmic meta-theorems for the case where 𝓁 is not part of the parameter, using some structural graph parameters incomparable with bandwidth. We show that if the feasibility is defined in MSO, then the reconfiguration problem under the so-called token jumping rule is fixed-parameter tractable parameterized by neighborhood diversity. We also show that the problem is fixed-parameter tractable parameterized by treedepth + k, where k is the size of sets being transformed. We finally complement the positive result for treedepth by showing that the problem is PSPACE-complete on forests of depth 3.
@InProceedings{gima_et_al:LIPIcs.ESA.2022.61, author = {Gima, Tatsuya and Ito, Takehiro and Kobayashi, Yasuaki and Otachi, Yota}, title = {{Algorithmic Meta-Theorems for Combinatorial Reconfiguration Revisited}}, booktitle = {30th Annual European Symposium on Algorithms (ESA 2022)}, pages = {61:1--61:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-247-1}, ISSN = {1868-8969}, year = {2022}, volume = {244}, editor = {Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.61}, URN = {urn:nbn:de:0030-drops-169991}, doi = {10.4230/LIPIcs.ESA.2022.61}, annote = {Keywords: Combinatorial reconfiguration, monadic second-order logic, fixed-parameter tractability, treedepth, neighborhood diversity} }
Feedback for Dagstuhl Publishing