Efficient Recognition of Subgraphs of Planar Cubic Bridgeless Graphs

Authors Miriam Goetze , Paul Jungeblut , Torsten Ueckerdt

Thumbnail PDF


  • Filesize: 0.84 MB
  • 14 pages

Document Identifiers

Author Details

Miriam Goetze
  • Karlsruhe Institute of Technology, Germany
Paul Jungeblut
  • Karlsruhe Institute of Technology, Germany
Torsten Ueckerdt
  • Karlsruhe Institute of Technology, Germany

Cite AsGet BibTex

Miriam Goetze, Paul Jungeblut, and Torsten Ueckerdt. Efficient Recognition of Subgraphs of Planar Cubic Bridgeless Graphs. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 62:1-62:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


It follows from the work of Tait and the Four-Color-Theorem that a planar cubic graph is 3-edge-colorable if and only if it contains no bridge. We consider the question of which planar graphs are subgraphs of planar cubic bridgeless graphs, and hence 3-edge-colorable. We provide an efficient recognition algorithm that given an n-vertex planar graph, augments this graph in 𝒪(n²) steps to a planar cubic bridgeless supergraph, or decides that no such augmentation is possible. The main tools involve the Generalized (Anti)factor-problem for the fixed embedding case, and SPQR-trees for the variable embedding case.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • edge colorings
  • planar graphs
  • cubic graphs
  • generalized factors
  • SPQR-tree


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Part I: Discharging. Illinois Journal of Mathematics, 21(3):429-490, 1977. URL: https://doi.org/10.1215/ijm/1256049011.
  2. Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Part II: Reducibility. Illinois Journal of Mathematics, 21(3):491-567, 1977. URL: https://doi.org/10.1215/ijm/1256049012.
  3. Sandeep N. Bhatt and Stavros S. Cosmadakis. The Complexity of Minimizing Wire Lengths in VLSI Layouts. Information Processing Letters, 25(4):263-267, 1987. URL: https://doi.org/10.1016/0020-0190(87)90173-6.
  4. Therese Biedl, Goos Kant, and Michael Kaufmann. On Triangulating Planar Graphs under the Four-Connectivity Constraint. Algorithmica, 19(4):427-446, 1997. URL: https://doi.org/10.1007/PL00009182.
  5. Yan Cao, Guantao Chen, Guangming Jing, Michael Stiebitz, and Bjarne Toft. Graph Edge Coloring: A Survey. Graphs and Combinatorics, 35(1):33-66, 2019. URL: https://doi.org/10.1007/s00373-018-1986-5.
  6. Marek Chrobak and Takao Nishizeki. Improved Edge-Coloring Algorithms for Planar Graphs. Journal of Algorithms, 11(1):102-116, 1990. URL: https://doi.org/10.1016/0196-6774(90)90032-A.
  7. Richard Cole and Łukasz Kowalik. New Linear-Time Algorithms for Edge-Coloring Planar Graphs. Algorithmica, 50(3):351-368, 2008. URL: https://doi.org/10.1007/s00453-007-9044-3.
  8. Gérard Cornuéjols. General Factors of Graphs. Journal of Combinatorial Theory, Series B, 45(2):185-198, 1988. URL: https://doi.org/10.1016/0095-8956(88)90068-8.
  9. Hubert de Fraysseix and Patrice Ossona de Mendez. Regular Orientations, Arboricity, and Augmentation. In Roberto Tamassia and Ioannis G. Tollis, editors, Graph Drawing. GD 1994, volume 894 of Lecture Notes in Computer Science, pages 111-118, 1994. URL: https://doi.org/10.1007/3-540-58950-3_362.
  10. Giuseppe Di Battista and Roberto Tamassia. On-Line Planarity Testing. SIAM Journal on Computing, 25(5):956-997, 1996. URL: https://doi.org/10.1137/S0097539794280736.
  11. Emilio Di Giacomo and Giuseppe Liotta. The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing. In Md. Saidur Rahman and Satoshi Fujita, editors, WALCOM: Algorithms and Computation. WALCOM 2010, volume 5942 of Lecture Notes in Computer Science, pages 35-46, 2010. URL: https://doi.org/10.1007/978-3-642-11440-3_4.
  12. Kapali P. Eswaran and R. Endre Tarjan. Augmentation Problems. SIAM Journal on Computing, 5(4):653-665, 1976. URL: https://doi.org/10.1137/0205044.
  13. Miriam Goetze, Paul Jungeblut, and Torsten Ueckerdt. Efficient Recognition of Subgraphs of Planar Cubic Bridgeless Graphs. arXiv preprint, 2022. URL: http://arxiv.org/abs/2204.11750.
  14. Stefan Grünewald. Chromatic Index Critical Graphs and Multigraphs. PhD thesis, Universität Bielefeld, 2000. URL: https://pub.uni-bielefeld.de/record/2303675.
  15. Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation of SPQR-Trees. In Joe Marks, editor, Graph Drawing. GD 2000, volume 1984 of Lecture Notes in Computer Science, pages 77-90, 2001. URL: https://doi.org/10.1007/3-540-44541-2_8.
  16. Tanja Hartmann, Jonathan Rollin, and Ignaz Rutter. Regular augmentation of planar graphs. Algorithmica, 73(2):306-370, 2015. URL: https://doi.org/10.1007/s00453-014-9922-4.
  17. Ian Holyer. The NP-Completeness of Edge-Coloring. SIAM Journal on Computing, 10(4):718-720, 1981. URL: https://doi.org/10.1137/0210055.
  18. Goos Kant and Hans L. Bodlaender. Planar Graph Augmentation Problems. In Frank Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors, Algorithms and Data Structures. WADS 1991, volume 519 of Lecture Notes in Computer Science, pages 286-298, 1991. URL: https://doi.org/10.1007/BFb0028270.
  19. Goos Kant and Hans L. Bodlaender. Triangulating Planar Graphs While Minimizing the Maximum Degree. Information and Computation, 135(1):1-14, 1997. URL: https://doi.org/10.1006/inco.1997.2635.
  20. Jan Kratochvíl and Michal Vaner. A note on planar partial 3-trees. arXiv preprint, 2012. URL: http://arxiv.org/abs/1210.8113.
  21. László Lovász. The Factorization of Graphs. II. Acta Mathematica Academiae Scientiarum Hungarica, 23(1-2):223-246, 1972. URL: https://doi.org/10.1007/BF01889919.
  22. Ignaz Rutter and Alexander Wolff. Augmenting the Connectivity of Planar and Geometric Graphs. Electronic Notes in Discrete Mathematics, 31:53-56, 2008. URL: https://doi.org/10.1016/j.endm.2008.06.009.
  23. Daniel P. Sanders and Yue Zhao. Planar Graphs of Maximum Degree Seven are Class I. Journal of Combinatorial Theory, Series B, 83(2):201-212, 2001. URL: https://doi.org/10.1006/jctb.2001.2047.
  24. András Sebö. General Antifactors of Graphs. Journal of Combinatorial Theory, Series B, 58(2):174-184, 1993. URL: https://doi.org/10.1006/jctb.1993.1035.
  25. Paul D. Seymour. On Tutte’s Extension of the Four-Colour Problem. Journal of Combinatorial Theory, Series B, 31(1):82-94, 1981. URL: https://doi.org/10.1016/S0095-8956(81)80013-5.
  26. Peter G. Tait. 10. Remarks on the previous Communication. Proceedings of the Royal Society of Edinburgh, 10:729-731, 1880. URL: https://doi.org/10.1017/S0370164600044643.
  27. Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing, 1(2):146-160, 1972. URL: https://doi.org/10.1137/0201010.
  28. Robert E. Tarjan. A Note on Finding the Bridges of a Graph. Information Processing Letters, 2(6):160-161, 1974. URL: https://doi.org/10.1016/0020-0190(74)90003-9.
  29. Vadim G. Vizing. Critical Graphs with Given Chromatic Class. Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Diskretnyuı Analiz. Sbornik Trudov, pages 9-17, 1965. In Russian. Google Scholar
  30. Hassler Whitney. 2-Isomorphic Graphs. American Journal of Mathematics, 55(1):245-254, 1933. URL: https://doi.org/10.2307/2371127.
  31. Limin Zhang. Every Planar Graph with Maximum Degree 7 Is of Class 1. Graphs and Combinatorics, 16(4):467-495, 2000. URL: https://doi.org/10.1007/s003730070009.
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail