Boob et al. [Boob et al., 2020] described an iterative peeling algorithm called Greedy++ for the Densest Subgraph Problem (DSG) and conjectured that it converges to an optimum solution. Chekuri, Qaunrud and Torres [Chandra Chekuri et al., 2022] extended the algorithm to supermodular density problems (of which DSG is a special case) and proved that the resulting algorithm Super-Greedy++ (and hence also Greedy++) converges. In this paper we revisit the convergence proof and provide a different perspective. This is done via a connection to Fujishige’s quadratic program for finding a lexicographically optimal base in a (contra) polymatroid [Satoru Fujishige, 1980], and a noisy version of the Frank-Wolfe method from convex optimization [Frank and Wolfe, 1956; Jaggi, 2013]. This yields a simpler convergence proof, and also shows a stronger property that Super-Greedy++ converges to the optimal dense decomposition vector, answering a question raised in Harb et al. [Harb et al., 2022]. A second contribution of the paper is to understand Thorup’s work on ideal tree packing and greedy tree packing [Thorup, 2007; Thorup, 2008] via the Frank-Wolfe algorithm applied to find a lexicographically optimum base in the graphic matroid. This yields a simpler and transparent proof. The two results appear disparate but are unified via Fujishige’s result and convex optimization.
@InProceedings{harb_et_al:LIPIcs.ESA.2023.56, author = {Harb, Elfarouk and Quanrud, Kent and Chekuri, Chandra}, title = {{Convergence to Lexicographically Optimal Base in a (Contra)Polymatroid and Applications to Densest Subgraph and Tree Packing}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {56:1--56:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.56}, URN = {urn:nbn:de:0030-drops-187091}, doi = {10.4230/LIPIcs.ESA.2023.56}, annote = {Keywords: Polymatroid, lexicographically optimum base, densest subgraph, tree packing} }
Feedback for Dagstuhl Publishing