Submodular maximization has been a central topic in theoretical computer science and combinatorial optimization over the last decades. Plenty of well-performed approximation algorithms have been designed for the problem over a variety of constraints. In this paper, we consider the submodular multiple knapsack problem (SMKP). In SMKP, the profits of each subset of elements are specified by a monotone submodular function. The goal is to find a feasible packing of elements over multiple bins (knapsacks) to maximize the profit. Recently, Fairstein et al. [ESA20] proposed a nearly optimal (1-e^{-1}-ε)-approximation algorithm for SMKP. Their algorithm is obtained by combining configuration LP, a grouping technique for bin packing, and the continuous greedy algorithm for submodular maximization. As a result, the algorithm is somewhat sophisticated and inherently randomized. In this paper, we present an arguably simple deterministic combinatorial algorithm for SMKP, which achieves a (1-e^{-1}-ε)-approximation ratio. Our algorithm is based on very different ideas compared with Fairstein et al. [ESA20].
@InProceedings{sun_et_al:LIPIcs.ESA.2023.98, author = {Sun, Xiaoming and Zhang, Jialin and Zhang, Zhijie}, title = {{Simple Deterministic Approximation for Submodular Multiple Knapsack Problem}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {98:1--98:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.98}, URN = {urn:nbn:de:0030-drops-187517}, doi = {10.4230/LIPIcs.ESA.2023.98}, annote = {Keywords: Submodular maximization, knapsack problem, deterministic algorithm} }
Feedback for Dagstuhl Publishing