Exact Minimum Weight Spanners via Column Generation

Authors Fritz Bökler , Markus Chimani , Henning Jasper , Mirko H. Wagner



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.30.pdf
  • Filesize: 0.89 MB
  • 17 pages

Document Identifiers

Author Details

Fritz Bökler
  • Institute of Computer Science, Osnabrück University, Germany
Markus Chimani
  • Institute of Computer Science, Osnabrück University, Germany
Henning Jasper
  • Institute of Computer Science, Osnabrück University, Germany
Mirko H. Wagner
  • Institute of Computer Science, Osnabrück University, Germany

Cite AsGet BibTex

Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner. Exact Minimum Weight Spanners via Column Generation. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.30

Abstract

Given a weighted graph G, a minimum weight α-spanner is a least-weight subgraph H ⊆ G that preserves minimum distances between all node pairs up to a factor of α. There are many results on heuristics and approximation algorithms, including a recent investigation of their practical performance [Markus Chimani and Finn Stutzenstein, 2022]. Exact approaches, in contrast, have long been denounced as impractical: The first exact ILP (integer linear program) method [Sigurd and Zachariasen, 2004] from 2004 is based on a model with exponentially many path variables, solved via column generation. A second approach [Ahmed et al., 2019], modeling via arc-based multicommodity flow, was presented in 2019. In both cases, only graphs with 40-100 nodes were reported to be solvable. In this paper, we briefly report on a theoretical comparison between these two models from a polyhedral point of view, and then concentrate on improvements and engineering aspects. We evaluate their performance in a large-scale empirical study. We report that our tuned column generation approach, based on multicriteria shortest path computations, is able to solve instances with over 16 000 nodes within 13 min. Furthermore, now knowing optimal solutions for larger graphs, we are able to investigate the quality of the strongest known heuristic on reasonably sized instances for the first time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Mathematical optimization
  • Theory of computation → Network optimization
Keywords
  • Graph spanners
  • ILP
  • algorithm engineering
  • experimental study

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen Kobourov, and Richard Spence. Graph spanners: A tutorial review. Computer Science Review, 37, 2020. URL: https://doi.org/10.1016/j.cosrev.2020.100253.
  2. Reyan Ahmed, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen Kobourov, Faryad Darabi Sahneh, and Richard Spence. Approximation algorithms and an integer program for multi-level graph spanners. In Analysis of Experimental Algorithms: Special Event, SEA² 2019, Kalamata, Greece, June 24-29, 2019, pages 541-562. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-34029-2_35.
  3. Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: Theory, applications and algorithms. Englewood Cliffs, New Jersey, USA Arrow, KJ: Prentice-Hall, 1993. Google Scholar
  4. Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen. Constructing light spanners deterministically in near-linear time. Theoretical Computer Science, 907:82-112, 2022. URL: https://doi.org/10.1016/j.tcs.2022.01.021.
  5. Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81-100, 1993. URL: https://doi.org/10.1007/BF02189308.
  6. Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New state-space relaxations for solving the traveling salesman problem with time windows. INFORMS Journal on Computing, 24(3):356-371, 2012. URL: https://doi.org/10.1287/ijoc.1110.0456.
  7. Cynthia Barnhart, Natashia L Boland, Lloyd W Clarke, Ellis L Johnson, George L Nemhauser, and Rajesh G Shenoi. Flight string models for aircraft fleeting and routing. Transportation science, 32(3):208-220, 1998. URL: https://doi.org/10.1287/trsc.32.3.208.
  8. Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532-563, 2007. URL: https://doi.org/10.1002/rsa.20130.
  9. Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed steiner forest. Information and Computation, 222:93-107, 2013. URL: https://doi.org/10.1016/j.ic.2012.10.007.
  10. Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. Enabling research through the SCIP optimization suite 8.0. ACM Trans. Math. Softw., 49(2), 2023. URL: https://doi.org/10.1145/3585516.
  11. Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P Woodruff. Transitive-closure spanners. SIAM Journal on Computing, 41(6):1380-1425, 2012. Google Scholar
  12. Geoff Boeing. Street network models and measures for every u.s. city, county, urbanized area, census tract, and zillow-defined neighborhood. Urban Science, 3(1), 2019. URL: https://doi.org/10.3390/urbansci3010028.
  13. Fritz Bökler, Matthias Ehrgott, Christopher Morris, and Petra Mutzel. Output-sensitive complexity of multiobjective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 24(1-2):25-36, 2017. Google Scholar
  14. Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner. Exact minimum weight spanners via column generation. CoRR, 2024. arXiv-Version including an appendix. URL: https://arxiv.org/abs/2406.19164.
  15. Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner. Experimental data. https://tcs.uos.de/research/spanner, 2024.
  16. Leizhen Cai. NP-completeness of minimum spanner problems. Discrete Applied Mathematics, 48(2):187-194, 1994. URL: https://doi.org/10.1016/0166-218X(94)90073-6.
  17. Leizhen Cai and Mark Keil. Spanners in graphs of bounded degree. Networks, 24(4):233-249, 1994. URL: https://doi.org/10.1002/net.3230240406.
  18. Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness results on graph spanners. In Proc. SoCG 1992, pages 192-201. ACM, 1992. URL: https://doi.org/10.1145/142675.142717.
  19. Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W Klau, Karsten Klein, and Petra Mutzel. The Open Graph Drawing Framework (OGDF). In Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization, chapter 17. CRC press, 2014. Google Scholar
  20. Markus Chimani, Maria Kandyba, Ivana Ljubić, and Petra Mutzel. Orientation-based models for 0,1,2-survivable network design: Theory and practice. Math. Program., 124(1):413-439, 2010. URL: https://doi.org/10.1007/s10107-010-0375-5.
  21. Markus Chimani and Finn Stutzenstein. Spanner approximations in practice. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, Algorithms-ESA 2022, volume 244 of LIPIcs, pages 37:1-37:15, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.37.
  22. Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer programming models. Springer, 2014. Google Scholar
  23. IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation, 46(53):157, 2009. URL: https://www.ibm.com/analytics/cplex-optimizer.
  24. Martin Desrochers and François Soumis. A generalized permanent labelling algorithm for the shortest path problem with time windows. INFOR: Information Systems and Operational Research, 26(3):191-212, 1988. URL: https://doi.org/10.1080/03155986.1988.11732063.
  25. Jürgen Ebert. A versatile data structure for edge-oriented graph algorithms. Communications of the ACM, 30(6):513-519, 1987. URL: https://doi.org/10.1145/214762.214769.
  26. Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners and emulators. In SODA 2017, pages 652-669. ACM SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.41.
  27. Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. SIAM Journal on Discrete Mathematics, 29(3):1312-1321, 2015. URL: https://doi.org/10.1137/140979538.
  28. Michael Elkin and Shay Solomon. Fast constructions of lightweight spanners for general graphs. ACM Transactions on Algorithms (TALG), 12(3):1-21, 2016. URL: https://doi.org/10.1145/2836167.
  29. Paola Festa. Constrained shortest path problems: state-of-the-art and recent advances. In International Conference on Transparent Optical Networks (ICTON), pages 1-17. IEEE, 2015. URL: https://doi.org/10.1109/ICTON.2015.7193456.
  30. Matteo Fischetti. Facets of two Steiner arborescence polyhedra. Math. Program., 51(1):401-419, 1991. URL: https://doi.org/10.1007/BF01586946.
  31. Matteo Fischetti, Juan-José Salazar-Gonzalez, and Paolo Toth. The Generalized Traveling Salesman and Orienteering Problems. In Gregory Gutin and Abraham P. Punnen, editors, The Traveling Salesman Problem and Its Variations, pages 609-662. Springer US, 2007. URL: https://doi.org/10.1007/0-306-48213-4_13.
  32. Michael Robert Garey and David Stifler Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Company, New York, 1979. Google Scholar
  33. Irene Heinrich, Olli Herrala, Philine Schiewe, and Topias Terho. Using Light Spanning Graphs for Passenger Assignment in Public Transport. In Daniele Frigioni and Philine Schiewe, editors, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023), volume 115 of Open Access Series in Informatics (OASIcs), pages 2:1-2:16, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2023.2.
  34. Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bulletin of the American Mathematical Society, 43(4):439-561, 2006. Google Scholar
  35. Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of lipschitz functions with applications to data privacy. SIAM Journal on Computing, 42(2):700-731, 2013. URL: https://doi.org/10.1109/FOCS.2011.13.
  36. Yusuke Kobayashi. NP-hardness and fixed-parameter tractability of the minimum spanner problem. Theoretical Computer Science, 746:88-97, 2018. URL: https://doi.org/10.1016/j.tcs.2018.06.031.
  37. Thorsten Koch, Alexander Martin, and Stefan Voß. Steinlib: An updated library on Steiner tree problems in graphs. Tech Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2000. URL: http://steinlib.zib.de/steinlib.php.
  38. Gang Liu and KG Ramakrishnan. A* prune: an algorithm for finding k shortest paths subject to multiple constraints. In Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No. 01CH37213), volume 2, pages 743-749. IEEE, 2001. Google Scholar
  39. Ivana Ljubic, René Weiskircher, Ulrich Pferschy, Gunnar W. Klau, Petra Mutzel, and Matteo Fischetti. Solving the prize-collecting steiner tree problem to optimality. In Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments and the Second Workshop on Analytic Algorithmics and Combinatorics, Vancouver, BC, Canada, pages 68-76. SIAM, 2005. Google Scholar
  40. Ernesto Queiros Vieira Martins. On a multicriteria shortest path problem. European Journal of Operational Research, 16(2):236-245, 1984. Google Scholar
  41. Aristide Mingozzi, Marco A Boschetti, Salvatore Ricciardelli, and Lucio Bianco. A set partitioning approach to the crew scheduling problem. Operations Research, 47(6):873-888, 1999. URL: https://doi.org/10.1287/opre.47.6.873.
  42. David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of graph theory, 13(1):99-116, 1989. URL: https://doi.org/10.1002/jgt.3190130114.
  43. David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. In Proc. PODC 1987, pages 77-85. ACM, 1987. URL: https://doi.org/10.1145/41840.41847.
  44. Mathew Penrose. Random geometric graphs, volume 5. OUP Oxford, 2003. Google Scholar
  45. Luigi Di Puglia Pugliese and Francesca Guerriero. A survey of resource constrained shortest path problems: Exact solution approaches. Networks, 62(3):183-200, 2013. URL: https://doi.org/10.1002/net.21511.
  46. Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61:389-401, 2011. URL: https://doi.org/10.1007/s00453-010-9401-5.
  47. Khodakaram Salimifard and Sara Bigharaz. The multicommodity network flow problem: state of the art classification, applications, and solution methods. Operational Research, 22(2):1-47, 2022. URL: https://doi.org/10.1007/s12351-020-00564-8.
  48. Hanan Shpungin and Michael Segal. Near-optimal multicriteria spanner constructions in wireless ad hoc networks. IEEE/ACM Transactions on Networking, 18(6):1963-1976, 2010. URL: https://doi.org/10.1109/INFCOM.2009.5061918.
  49. Mikkel Sigurd and Martin Zachariasen. Construction of minimum-weight spanners. In Algorithms-ESA 2004, pages 797-808. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30140-0_70.
  50. Barrett W Thomas, Tobia Calogiuri, and Mike Hewitt. An exact bidirectional A^* approach for solving resource-constrained shortest path problems. Networks, 73(2):187-205, 2019. URL: https://doi.org/10.1002/net.21856.
  51. Markus Wallinger, Daniel Archambault, David Auber, Martin Nöllenburg, and Jaakko Peltonen. Faster edge-path bundling through graph spanners. Comput. Graph. Forum, 42(6), 2023. URL: https://doi.org/10.1111/CGF.14789.
  52. Bernard M. Waxman. Routing of multipoint connections. IEEE J. Sel. Areas Commun., 6(9):1617-1622, 1988. URL: https://doi.org/10.1109/49.12889.
  53. Laurence A Wolsey. Integer Programming. John Wiley & Sons, 2020. Google Scholar
  54. Xiaoyan Zhu and Wilbert E Wilhelm. A three-stage approach for the resource-constrained shortest path as a sub-problem in column generation. Computers & Operations Research, 39(2):164-178, 2012. URL: https://doi.org/10.1016/j.cor.2011.03.008.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail