Approximation Algorithms for Steiner Connectivity Augmentation

Authors Daniel Hathcock , Michael Zlatin



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.67.pdf
  • Filesize: 0.82 MB
  • 16 pages

Document Identifiers

Author Details

Daniel Hathcock
  • Carnegie Mellon University, Pittsburgh, PA, USA
Michael Zlatin
  • Carnegie Mellon University, Pittsburgh, PA, USA

Cite AsGet BibTex

Daniel Hathcock and Michael Zlatin. Approximation Algorithms for Steiner Connectivity Augmentation. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 67:1-67:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.67

Abstract

We consider connectivity augmentation problems in the Steiner setting, where the goal is to augment the edge-connectivity between a specified subset of terminal nodes. In the Steiner Augmentation of a Graph problem (k-SAG), we are given a k-edge-connected subgraph H of a graph G. The goal is to augment H by including links from G of minimum cost so that the edge-connectivity between nodes of H increases by 1. This is a generalization of the Weighted Connectivity Augmentation Problem, in which only links between pairs of nodes in H are available for the augmentation. In the Steiner Connectivity Augmentation Problem (k-SCAP), we are given a Steiner k-edge-connected graph connecting terminals R, and we seek to add links of minimum cost to create a Steiner (k+1)-edge-connected graph for R. Note that k-SAG is a special case of k-SCAP. The results of Ravi, Zhang and Zlatin for the Steiner Tree Augmentation problem yield a (1.5+ε)-approximation for 1-SCAP and for k-SAG when k is odd [Ravi et al., 2023]. In this work, we give a (1 + ln{2} +ε)-approximation for the Steiner Ring Augmentation Problem (SRAP). This yields a polynomial time algorithm with approximation ratio (1 + ln{2} + ε) for 2-SCAP. We obtain an improved approximation guarantee for SRAP when the ring consists of only terminals, yielding a (1.5+ε)-approximation for k-SAG for any k.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Approximation Algorithms
  • Steiner Connectivity
  • Network Design

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Al Borchers and Ding-Zhu Du. Thek-steiner ratio in graphs. SIAM Journal on Computing, 26(3):857-869, 1997. URL: https://doi.org/10.1137/S0097539795281086.
  2. Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and connectivity augmentation: unified and stronger approaches. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 370-383, 2021. URL: https://doi.org/10.1145/3406325.3451086.
  3. Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-and-project, part I: stemless TAP. Algorithmica, 80(2):530-559, 2018. URL: https://doi.org/10.1007/s00453-016-0270-4.
  4. Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-and-project, part II. Algorithmica, 80(2):608-651, 2018. URL: https://doi.org/10.1007/s00453-017-0275-7.
  5. Joseph Cheriyan, Howard Karloff, Rohit Khandekar, and Jochen Könemann. On the integrality ratio for tree augmentation. Operations Research Letters, 36(4):399-401, 2008. URL: https://doi.org/10.1016/j.orl.2008.01.009.
  6. Nachshon Cohen and Zeev Nutov. A (1 + ln 2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius. Theoret. Comput. Sci., 489/490:67-74, 2013. URL: https://doi.org/10.1016/j.tcs.2013.04.004.
  7. Yefim Dinitz and Alek Vainshtein. The connectivity carcass of a vertex subset in a graph and its incremental maintenance. In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages 716-725, 1994. URL: https://doi.org/10.1145/195058.195442.
  8. Stuart E Dreyfus and Robert A Wagner. The steiner problem in graphs. Networks, 1(3):195-207, 1971. URL: https://doi.org/10.1002/net.3230010302.
  9. Tamás Fleiner and András Frank. A quick proof for the cactus representation of mincuts. EGRES Quick Proof, 3:2009, 2009. Google Scholar
  10. Greg N Frederickson and Joseph Ja’Ja’. Approximation algorithms for several graph augmentation problems. SIAM Journal on Computing, 10(2):270-283, 1981. URL: https://doi.org/10.1137/0210019.
  11. Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Krzysztof Sornat. On the cycle augmentation problem: hardness and approximation algorithms. Theory of Computing Systems, 65(6):985-1008, 2021. URL: https://doi.org/10.1007/s00224-020-10025-6.
  12. Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. Improved approximation for two-edge-connectivity. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2368-2410. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch92.
  13. Fabrizio Grandoni, Afrouz Jabal Ameli, and Vera Traub. Breaching the 2-approximation barrier for the forest augmentation problem. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1598-1611. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520035.
  14. Christoph Hunkenschröder, Santosh S. Vempala, and Adrian Vetta. A 4/3-approximation algorithm for the minimum 2-edge connected subgraph problem. ACM Trans. Algorithms, 15(4):55:1-55:28, 2019. URL: https://doi.org/10.1145/3341599.
  15. Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem. Combinatorica, 21(1):39-60, 2001. URL: https://doi.org/10.1007/s004930170004.
  16. Yusuke Kobayashi and Takashi Noguchi. An approximation algorithm for two-edge-connected subgraph problem via triangle-free two-edge-cover. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 49:1-49:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2023.49.
  17. Guy Kortsarz, Robert Krauthgamer, and James R Lee. Hardness of approximation for vertex-connectivity network design problems. SIAM Journal on Computing, 33(3):704-720, 2004. URL: https://doi.org/10.1137/S0097539702416736.
  18. Zeev Nutov. Approximating steiner networks with node-weights. SIAM Journal on Computing, 39(7):3001-3022, 2010. URL: https://doi.org/10.1137/080729645.
  19. Ojas Parekh, R. Ravi, and Michael Zlatin. On small-depth tree augmentations. CoRR, abs/2111.00148, 2021. URL: https://doi.org/10.48550/arXiv.2111.00148.
  20. R Ravi, Weizhong Zhang, and Michael Zlatin. Approximation algorithms for steiner tree augmentation problems. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2429-2448. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch94.
  21. András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597-629, 2014. URL: https://doi.org/10.1007/s00493-014-2960-3.
  22. Vera Traub and Rico Zenklusen. A (1.5+$$1epsilon)-approximation algorithm for weighted connectivity augmentation. arXiv preprint arXiv:2209.07860, 2022. Google Scholar
  23. Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1-12, 2022. URL: https://doi.org/10.1109/FOCS52979.2021.00010.
  24. Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner tree. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3253-3272. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.128.
  25. David P Williamson, Michel X Goemans, Milena Mihail, and Vijay V Vazirani. A primal-dual approximation algorithm for generalized steiner network problems. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 708-717, 1993. URL: https://doi.org/10.1145/167088.167268.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail