Parameterized Complexity of MinCSP over the Point Algebra

Authors George Osipov , Marcin Pilipczuk , Magnus Wahlström



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.93.pdf
  • Filesize: 0.78 MB
  • 15 pages

Document Identifiers

Author Details

George Osipov
  • Linköping University, Sweden
Marcin Pilipczuk
  • University of Warsaw, Poland
Magnus Wahlström
  • Royal Holloway, University of London, UK

Acknowledgements

We thank the anonymous reviewers whose detailed feedback significantly improved presentation of the paper.

Cite AsGet BibTex

George Osipov, Marcin Pilipczuk, and Magnus Wahlström. Parameterized Complexity of MinCSP over the Point Algebra. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 93:1-93:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.93

Abstract

The input in the Minimum-Cost Constraint Satisfaction Problem (MinCSP) over the Point Algebra contains a set of variables, a collection of constraints of the form x < y, x = y, x ≤ y and x ≠ y, and a budget k. The goal is to check whether it is possible to assign rational values to the variables while breaking constraints of total cost at most k. This problem generalizes several prominent graph separation and transversal problems: - MinCSP({<}) is equivalent to Directed Feedback Arc Set, - MinCSP({< , ≤}) is equivalent to Directed Subset Feedback Arc Set, - MinCSP({= ,≠}) is equivalent to Edge Multicut, and - MinCSP({≤ ,≠}) is equivalent to Directed Symmetric Multicut. Apart from trivial cases, MinCSP({Γ}) for Γ ⊆ {< , = , ≤ ,≠} is NP-hard even to approximate within any constant factor under the Unique Games Conjecture. Hence, we study parameterized complexity of this problem under a natural parameterization by the solution cost k. We obtain a complete classification: if Γ ⊆ {< , = , ≤ ,≠} contains both ≤ and ≠, then MinCSP({Γ}) is W[1]-hard, otherwise it is fixed-parameter tractable. For the positive cases, we solve MinCSP({< , = ,≠}), generalizing the FPT results for Directed Feedback Arc Set and Edge Multicut as well as their weighted versions. Our algorithm works by reducing the problem into a Boolean MinCSP, which is in turn solved by flow augmentation. For the lower bounds, we prove that Directed Symmetric Multicut is W[1]-hard, solving an open problem.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • parameterized complexity
  • constraint satisfaction
  • point algebra
  • multicut
  • feedback arc set

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. James F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26:832-843, 1983. Google Scholar
  2. Manuel Bodirsky, Peter Jonsson, Barnaby Martin, Antoine Mottet, and Žaneta Semanišinová. Complexity classification transfer for csps via algebraic products, 2022. URL: https://arxiv.org/abs/2211.03340.
  3. Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of Computing Systems, 43:136-158, 2008. Google Scholar
  4. Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction problems. Journal of the ACM, 57:1-41, 2010. Google Scholar
  5. Édouard Bonnet, László Egri, Bingkai Lin, and Dániel Marx. Fixed-parameter approximability of Boolean MinCSPs, 2016. URL: https://arxiv.org/abs/1601.04935.
  6. Édouard Bonnet, László Egri, and Dániel Marx. Fixed-parameter approximability of Boolean MinCSPs. In Proceedings of the 24th Annual European Symposium on Algorithms (ESA 2016), pages 18:1-18:18, 2016. Google Scholar
  7. Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM Journal on Computing, 47:166-207, 2018. Google Scholar
  8. Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem. Journal of the ACM, 55(5), 2008. Google Scholar
  9. Rajesh Chitnis, Marek Cygan, Mohammataghi Hajiaghayi, and Dániel Marx. Directed subset feedback vertex set is fixed-parameter tractable. ACM Transactions on Algorithms, 11:1-28, 2015. Google Scholar
  10. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  11. Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma. Parameterized complexity classification for interval constraints. In Proceedings of the 18th International Symposium on Parameterized and Exact Computation (IPEC 2023), pages 11:1-11:19, 2023. Google Scholar
  12. Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström. Almost consistent systems of linear equations. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), pages 3179-3217, 2023. Google Scholar
  13. Eduard Eiben, Clément Rambaud, and Magnus Wahlström. On the parameterized complexity of symmetric directed multicut. In Proceedings of the 17th International Symposium on Parameterized and Exact Computation (IPEC 2022), pages 11:1-11:17, 2022. Google Scholar
  14. Venkatesan Guruswami and Euiwoong Lee. Simple proof of hardness of feedback vertex set. Theory of Computing, 12:1-11, 2016. Google Scholar
  15. Yoichi Iwata and Yuichi Yoshida. Exact and approximation algorithms for the maximum constraint satisfaction problem over the point algebra. In Proc. 30th International Symposium on Theoretical Aspects of Computer Science, (STACS 2013), pages 127-138, 2013. Google Scholar
  16. Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pages 767-775, 2002. Google Scholar
  17. Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Solving hard cut problems via flow-augmentation. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 149-168, 2021. Google Scholar
  18. Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-augmentation. In Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC 2022), pages 938-947, 2022. Google Scholar
  19. Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation III: Complexity dichotomy for Boolean CSPs parameterized by the number of unsatisfied constraints. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), pages 3218-3228, 2023. Google Scholar
  20. Eun Jung Kim, Tomáš Masařík, Marcin Pilipczuk, Roohani Sharma, and Magnus Wahlström. On weighted graph separation problems and flow augmentation. SIAM Journal on Discrete Mathematics, 38:170-189, 2024. Google Scholar
  21. Andrei A. Krokhin, Peter Jeavons, and Peter Jonsson. Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50:591-640, 2003. Google Scholar
  22. Dániel Marx. Parameterized graph separation problems. Theoretical Computer Science, 351:394-406, 2006. Google Scholar
  23. Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM Journal on Computing, 43:355-388, 2014. Google Scholar
  24. George Osipov and Magnus Wahlström. Parameterized complexity of Equality MinCSP. In Proceedings of the 31st Annual European Symposium on Algorithms (ESA 2023), pages 86:1-86:17, 2023. Google Scholar
  25. Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four terminal pairs. ACM Transactions on Computation Theory, 10:1-18, 2018. Google Scholar
  26. Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations Research Letters, 32:299-301, 2004. Google Scholar
  27. Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual ACM Symposium on Theory of computing (STOC 1978), pages 216-226, 1978. Google Scholar
  28. Ola Svensson. Hardness of vertex deletion and project scheduling. In International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX 2012), pages 301-312, 2012. Google Scholar
  29. Marc Vilain, Henry Kautz, and Peter Van Beek. Constraint propagation algorithms for temporal reasoning: A revised report. In Readings in qualitative reasoning about physical systems, pages 373-381. Elsevier, 1990. Google Scholar
  30. Marc B. Vilain and Henry A. Kautz. Constraint propagation algorithms for temporal reasoning. In Proceedings of the 5th National Conference on Artificial Intelligence (AAAI 1986), pages 377-382, 1986. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail