LIPIcs.FSCD.2016.5.pdf
- Filesize: 0.56 MB
- 15 pages
Following Aehlig, we consider a hierarchy F^p= { F^p_n }_{n in Nat} of parameter-free subsystems of System F, where each F^p_n corresponds to ID_n, the theory of n-times iterated inductive definitions (thus our F^p_n corresponds to the n+1th system of Aehlig). We here present two proofs of strong normalization for F^p_n, which are directly formalizable with inductive definitions. The first one, based on the Joachimski-Matthes method, can be fully formalized in ID_n+1. This provides a tight upper bound on the complexity of the normalization theorem for System F^p_n. The second one, based on the Godel-Tait method, can be locally formalized in ID_n. This provides a direct proof to the known result that the representable functions in F^p_n are provably total in ID_n. In both cases, Buchholz' Omega-rule plays a central role.
Feedback for Dagstuhl Publishing