Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus Based on the Omega-Rule.

Authors Ryota Akiyoshi, Kazushige Terui

Thumbnail PDF


  • Filesize: 0.56 MB
  • 15 pages

Document Identifiers

Author Details

Ryota Akiyoshi
Kazushige Terui

Cite AsGet BibTex

Ryota Akiyoshi and Kazushige Terui. Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus Based on the Omega-Rule.. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Following Aehlig, we consider a hierarchy F^p= { F^p_n }_{n in Nat} of parameter-free subsystems of System F, where each F^p_n corresponds to ID_n, the theory of n-times iterated inductive definitions (thus our F^p_n corresponds to the n+1th system of Aehlig). We here present two proofs of strong normalization for F^p_n, which are directly formalizable with inductive definitions. The first one, based on the Joachimski-Matthes method, can be fully formalized in ID_n+1. This provides a tight upper bound on the complexity of the normalization theorem for System F^p_n. The second one, based on the Godel-Tait method, can be locally formalized in ID_n. This provides a direct proof to the known result that the representable functions in F^p_n are provably total in ID_n. In both cases, Buchholz' Omega-rule plays a central role.
  • Polymorphic Lambda Calculus
  • Strong Normalization
  • Computability Predicate
  • Infinitary Proof Theory


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail