Graph Games on Ordinals

Authors Julien Cristau, Florian Horn



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2008.1748.pdf
  • Filesize: 422 kB
  • 12 pages

Document Identifiers

Author Details

Julien Cristau
Florian Horn

Cite As Get BibTex

Julien Cristau and Florian Horn. Graph Games on Ordinals. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 2, pp. 143-154, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008) https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1748

Abstract

We consider an extension of Church\'s synthesis problem to ordinals by adding
limit transitions to graph games.  We consider game arenas where these limit
transitions are defined using the sets of cofinal states.  In a
previous paper, we have shown that such games of ordinal length are determined
and that the winner problem is \pspace-complete, for a subclass of arenas
where the length of plays is always smaller than $\omega^\omega$.  However,
the proof uses a rather involved reduction to classical Muller games, and the
resulting strategies need infinite memory.
	
We adapt the LAR reduction to prove the determinacy in the general case, and
to generate strategies with finite memory, using a reduction to games where
the limit transitions are defined by priorities.  We provide an algorithm for
computing the winning regions of both players in these games, with a
complexity similar to parity games.  Its analysis yields three results:
determinacy without hypothesis on the length of the plays, existence of
memoryless strategies, and membership of the winner problem in \npconp.

Subject Classification

Keywords
  • Games
  • ordinals
  • zeno

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail