We study the problem of space-efficient polynomial-time algorithms for {\em directed st-connectivity} (STCON). Given a directed graph $G$, and a pair of vertices $s, t$, the STCON problem is to decide if there exists a path from $s$ to $t$ in $G$. For general graphs, the best polynomial-time algorithm for STCON uses space that is only slightly sublinear. However, for special classes of directed graphs, polynomial-time poly-logarithmic-space algorithms are known for STCON. In this paper, we continue this thread of research and study a class of graphs called \emph{unique-path graphs with respect to source $s$}, where there is at most one simple path from $s$ to any vertex in the graph. For these graphs, we give a polynomial-time algorithm that uses $\tilde O(n^{\varepsilon})$ space for any constant $\varepsilon \in (0,1]$. We also give a polynomial-time, $\tilde O(n^\varepsilon)$-space algorithm to \emph{recognize} unique-path graphs. Unique-path graphs are related to configuration graphs of unambiguous log-space computations, but they can have some directed cycles. Our results may be viewed along the continuum of sublinear-space polynomial-time algorithms for STCON in different classes of directed graphs - from slightly sublinear-space algorithms for general graphs to $O(\log n)$ space algorithms for trees.
@InProceedings{kannan_et_al:LIPIcs.FSTTCS.2008.1758, author = {Kannan, Sampath and Khanna, Sanjeev and Roy, Sudeepa}, title = {{STCON in Directed Unique-Path Graphs}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science}, pages = {256--267}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-08-8}, ISSN = {1868-8969}, year = {2008}, volume = {2}, editor = {Hariharan, Ramesh and Mukund, Madhavan and Vinay, V}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2008.1758}, URN = {urn:nbn:de:0030-drops-17589}, doi = {10.4230/LIPIcs.FSTTCS.2008.1758}, annote = {Keywords: Algorithm, complexity, st-connectivity} }
Feedback for Dagstuhl Publishing