New bounds on the classical and quantum communication complexity of some graph properties

Authors Gábor Ivanyos, Hartmut Klauck, Troy Lee, Miklos Santha, Ronald de Wolf



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2012.148.pdf
  • Filesize: 0.7 MB
  • 12 pages

Document Identifiers

Author Details

Gábor Ivanyos
Hartmut Klauck
Troy Lee
Miklos Santha
Ronald de Wolf

Cite AsGet BibTex

Gábor Ivanyos, Hartmut Klauck, Troy Lee, Miklos Santha, and Ronald de Wolf. New bounds on the classical and quantum communication complexity of some graph properties. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 18, pp. 148-159, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.148

Abstract

We study the communication complexity of a number of graph properties where the edges of the graph G are distributed between Alice and Bob (i.e., each receives some of the edges as input). Our main results are: 1. An Omega(n) lower bound on the quantum communication complexity of deciding whether an n-vertex graph G is connected, nearly matching the trivial classical upper bound of O(n log n) bits of communication. 2. A deterministic upper bound of O(n^{3/2} log n) bits for deciding if a bipartite graph contains a perfect matching, and a quantum lower bound of Omega(n) for this problem. 3. A Theta(n^2) bound for the randomized communication complexity of deciding if a graph has an Eulerian tour, and a Theta(n^{3/2}) bound for its quantum communication complexity. 4. The first two quantum lower bounds are obtained by exhibiting a reduction from the n-bit Inner Product problem to these graph problems, which solves an open question of Babai, Frankl and Simon [Babai et al 1986]. The third quantum lower bound comes from recent results about the quantum communication complexity of composed functions. We also obtain essentially tight bounds for the quantum communication complexity of a few other problems, such as deciding if $G$ is triangle-free, or if G is bipartite, as well as computing the determinant of a distributed matrix.
Keywords
  • Graph properties
  • communication complexity
  • quantum communication

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail