Allocation of Divisible Goods Under Lexicographic Preferences

Authors Leonard J. Schulman, Vijay V. Vazirani

Thumbnail PDF


  • Filesize: 0.99 MB
  • 17 pages

Document Identifiers

Author Details

Leonard J. Schulman
Vijay V. Vazirani

Cite AsGet BibTex

Leonard J. Schulman and Vijay V. Vazirani. Allocation of Divisible Goods Under Lexicographic Preferences. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, pp. 543-559, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


We present a simple and natural non-pricing mechanism for allocating divisible goods among strategic agents having lexicographic preferences. Our mechanism has favorable properties of strategy-proofness (incentive compatibility). In addition (and even when extended to the case of Leontief bundles) it enjoys Pareto efficiency, envy-freeness, and time efficiency.
  • Mechanism design
  • lexicographic preferences
  • strategyproof
  • Pareto optimal
  • incentive compatible


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica, 22:265-290, 1954. Google Scholar
  2. R. Aumann and M. Maschler. Game theoretic analysis of a bankruptcy problem from the Talmud. J. Economic Theory, 36:195-213, 1985. Google Scholar
  3. H. Aziz, S. Gaspers, S. Mackenzie, N. Mattei, N. Narodytska, and T. Walsh. Equilibria under the probabilistic serial rule. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI'15, pages 1105-1112, 2015. Google Scholar
  4. S. Barberà and M. O. Jackson. Strategy-proof exchange. Econometrica, 63(1):51-87, 1995. Google Scholar
  5. A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem. Journal of Economic Theory, 100:295-328, 2001. Google Scholar
  6. W. J. Cho. Probabilistic assignment: A two-fold axiomatic approach. 2012. Google Scholar
  7. H. Crès and H. Moulin. Scheduling with opting out: improving upon random priority. Operations Research, 49(4):565-577, 2001. Google Scholar
  8. P. Dasgupta, P. Hammond, and E. Maskin. The implementation of social choice rules. Review of Economic Studies, 46:153-170, 1979. Google Scholar
  9. D. Gale. College course assignments and optimal lotteries. Mimeo, University of California, Berkeley, 1987. Google Scholar
  10. A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant resource fairness: fair allocation of multiple resource types. In Proc. 8'th USENIX conference on networked systems design and implementation, 2011. Google Scholar
  11. M. Hausner. Multidimensional utilities. In R. L. Davis, R. M. Thrall, and C. H. Coombs, editors, Decision Processes, pages 167-180. Wiley, 1954. Google Scholar
  12. L. Hurwicz. On informationally decentralized systems. In C. B. McGuire and R. Radner, editors, Decision and Organization, pages 297-336. North-Holland, Amsterdam, 1972. Google Scholar
  13. M. Kaminski. Hydraulic rationing. Mathematical Social Sciences, 40:131-155, 2000. Google Scholar
  14. M. Kato and S. Ohseto. Toward general impossibility theorems in pure exchange economies. Social Choice and Welfare, 19:659-664, 2002. Google Scholar
  15. A. Katta and J. Sethuraman. A solution to the random assignment problem on the full preference domain. Journal of Economic Theory, 131:231-250, 2006. Google Scholar
  16. F. Kojima. Random assignment of multiple indivisible objects. Mathematical Social Sciences, 57(1):134-142, 2009. Google Scholar
  17. J. Li and J. Xue. Egalitarian division under Leontief preferences. Manuscript, 2012. Google Scholar
  18. A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic theory. Oxford University Press, 1995. Google Scholar
  19. A. Nicolo. Efficiency and truthfulness with Leontief preferences. Review of Economic Design, 8(4):373-382, 2004. Google Scholar
  20. N. Nisan. Introduction to mechanism design (for computer scientists). In N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, editors, Algorithmic Game Theory, pages 209-241. Cambridge University Press, 2007. Google Scholar
  21. B. O'Neill. A problem of rights arbitration from the Talmud. Mathematical Social Sciences, 2(4):345-371, 1982. Google Scholar
  22. D. Saban and J. Sethuraman. A note on object allocation under lexicographic preferences. J. Mathematical Economics, 50:283-289, 2014. Google Scholar
  23. M. Satterthwaite and H. Sonnenschein. Strategy-proof allocation mechanisms at differentiable points. Review of Economic Studies, 48:587-597, 1981. Google Scholar
  24. L.J. Schulman and V. V. Vazirani. Allocation of divisible goods under lexicographic preferences. In arXiv, 1206.4366, 2012. Google Scholar
  25. S. Serizawa. Inefficiency of strategy-proof rules for pure exchange economies. Journal of Economic Theory, 106:219-241, 2002. Google Scholar
  26. S. Serizawa and J. Weymark. Efficient strategy-proof exchange and minimum consumption guarantees. Journal of Economic Theory, 109:246-263, 2003. Google Scholar
  27. L. Zhou. On a conjecture by Gale about one-sided matching problems. J. Econ. Theory, 52:123-135, 1990. Google Scholar
  28. L. Zhou. Inefficiency of strategy-proof allocation mechanisms in pure exchange economies. Social Choice and Welfare, 8(3):247-254, 1991. Google Scholar