The theory of regular and aperiodic transformations of finite strings has recently received a lot of interest. These classes can be equivalently defined using logic (Monadic second-order logic and first-order logic), two-way machines (regular two-way and aperiodic two-way transducers), and one-way register machines (regular streaming string and aperiodic streaming string transducers). These classes are known to be closed under operations such as sequential composition and regular (star-free) choice; and problems such as functional equivalence and type checking, are decidable for these classes. On the other hand, for infinite strings these results are only known for regular transformations: Alur, Filiot, and Trivedi studied transformations of infinite strings and introduced an extension of streaming string transducers over infinte strings and showed that they capture monadic second-order definable transformations for infinite strings. In this paper we extend their work to recover connection for infinite strings among first-order logic definable transformations, aperiodic two-way transducers, and aperiodic streaming string transducers.
@InProceedings{dave_et_al:LIPIcs.FSTTCS.2016.12, author = {Dave, Vrunda and Krishna, Shankara Narayanan and Trivedi, Ashutosh}, title = {{FO-Definable Transformations of Infinite Strings}}, booktitle = {36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)}, pages = {12:1--12:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-027-9}, ISSN = {1868-8969}, year = {2016}, volume = {65}, editor = {Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016.12}, URN = {urn:nbn:de:0030-drops-68476}, doi = {10.4230/LIPIcs.FSTTCS.2016.12}, annote = {Keywords: Transducers, FO-definability, Infinite Strings} }
Feedback for Dagstuhl Publishing