Document

On the Probabilistic Degree of OR over the Reals

File

LIPIcs.FSTTCS.2018.5.pdf
• Filesize: 475 kB
• 12 pages

Cite As

Siddharth Bhandari, Prahladh Harsha, Tulasimohan Molli, and Srikanth Srinivasan. On the Probabilistic Degree of OR over the Reals. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 5:1-5:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.5

Abstract

We study the probabilistic degree over R of the OR function on n variables. For epsilon in (0,1/3), the epsilon-error probabilistic degree of any Boolean function f:{0,1}^n -> {0,1} over R is the smallest non-negative integer d such that the following holds: there exists a distribution of polynomials Pol in R[x_1,...,x_n] entirely supported on polynomials of degree at most d such that for all z in {0,1}^n, we have Pr_{P ~ Pol}[P(z) = f(z)] >= 1- epsilon. It is known from the works of Tarui (Theoret. Comput. Sci. 1993) and Beigel, Reingold, and Spielman (Proc. 6th CCC 1991), that the epsilon-error probabilistic degree of the OR function is at most O(log n * log(1/epsilon)). Our first observation is that this can be improved to O{log (n atop <= log(1/epsilon))}, which is better for small values of epsilon. In all known constructions of probabilistic polynomials for the OR function (including the above improvement), the polynomials P in the support of the distribution Pol have the following special structure: P(x_1,...,x_n) = 1 - prod_{i in [t]} (1- L_i(x_1,...,x_n)), where each L_i(x_1,..., x_n) is a linear form in the variables x_1,...,x_n, i.e., the polynomial 1-P(bar{x}) is a product of affine forms. We show that the epsilon-error probabilistic degree of OR when restricted to polynomials of the above form is Omega(log (n over <= log(1/epsilon))/log^2 (log (n over <= log(1/epsilon))})), thus matching the above upper bound (up to polylogarithmic factors).

Subject Classification

ACM Subject Classification
• Theory of computation → Probabilistic computation
• Theory of computation → Circuit complexity
Keywords
• Polynomials over reals
• probabilistic polynomials
• probabilistic degree
• OR polynomial

Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

References

1. Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. A Lower Bound for Radio Broadcast. J. Comput. Syst. Sci., 43(2):290-298, 1991. URL: http://dx.doi.org/10.1016/0022-0000(91)90015-W.
2. Noga Alon and Zoltán Füredi. Covering the Cube by Affine Hyperplanes. Eur. J. Comb., 14(2):79-83, 1993. URL: http://dx.doi.org/10.1006/eujc.1993.1011.
3. Richard Beigel, Nick Reingold, and Daniel A. Spielman. The Perceptron Strikes Back. In Proc. 6th IEEE Conf. on Structure in Complexity Theory, pages 286-291, 1991. URL: http://dx.doi.org/10.1109/SCT.1991.160270.
4. Mark Braverman. Polylogarithmic independence fools AC⁰ circuits. J. ACM, 57(5), 2010. (Preliminary version in 24th IEEE Conference on Computational Complexity, 2009). https://eccc.weizmann.ac.il/eccc-reports/2009/TR09-011, URL: http://dx.doi.org/10.1145/1754399.1754401.
5. Paul Erdős. On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc., 51(12):898-902, 1945. URL: http://dx.doi.org/10.1090/S0002-9904-1945-08454-7.
6. Prahladh Harsha and Srikanth Srinivasan. On Polynomial Approximations to AC⁰. Random Structures Algorithms, 2018. (Preliminary version in 20th RANDOM, 2016). URL: http://dx.doi.org/10.1002/rsa.20786.
7. Johan Håstad. Almost optimal lower bounds for small depth circuits. In Silvio Micali, editor, Randomness and Computation, volume 5 of Advances in Computing Research, pages 143-170. JAI Press, Greenwich, Connecticut, 1989. (Preliminary version in 18th STOC 1986). URL: http://www.csc.kth.se/~johanh/largesmalldepth.pdf.
8. John Edensor Littlewood and A. Cyril Offord. On the Number of Real Roots of a Random Algebraic Equation. J. London Math. Soc., s1-13(4):288-295, 1938. URL: http://dx.doi.org/10.1112/jlms/s1-13.4.288.
9. Michael Luby and Boban Velickovic. On Deterministic Approximation of DNF. Algorithmica, 16(4/5):415-433, 1996. (Preliminary version in 23rd STOC, 1991). URL: http://dx.doi.org/10.1007/BF01940873.
10. Raghu Meka, Oanh Nguyen, and Van Vu. Anti-concentration for Polynomials of Independent Random Variables. Theory Comput., 12(11):1-17, 2016. URL: http://dx.doi.org/10.4086/toc.2016.v012a011.
11. Alexander A. Razborov. Нжние оценки размера схем ограниченной глубины в полном базисе, содержащем функцию логического сложения (Russian) [Lower bounds on the size of bounded depth circuits over a complete basis with logical addition]. Mathematicheskie Zametki, 41(4):598-607, 1987. (English translation in Mathematical Notes of the Academy of Sciences of the USSR, 41(4):333-338, 1987). URL: http://dx.doi.org/10.1007/BF01137685.
12. Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity. In Proc. 19th ACM Symp. on Theory of Computing (STOC), pages 77-82, 1987. URL: http://dx.doi.org/10.1145/28395.28404.
13. Avishay Tal. Tight Bounds on the Fourier Spectrum of AC⁰. In Proc. 32nd Comput. Complexity Conf., volume 79 of LIPIcs, pages 15:1-15:31. Schloss Dagstuhl, 2017. https://eccc.weizmann.ac.il/eccc-reports/2014/TR14-174, URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2017.15.
14. Jun Tarui. Probabilistic Polynomials, AC⁰ Functions, and the Polynomial-Time Hierarchy. Theoret. Comput. Sci., 113(1):167-183, 1993. (Preliminary version in 8th STACS, 1991). URL: http://dx.doi.org/10.1016/0304-3975(93)90214-E.
15. Seinosuke Toda and Mitsunori Ogiwara. Counting Classes are at Least as Hard as the Polynomial-Time Hierarchy. SIAM J. Comput., 21(2):316-328, 1992. (Preliminary version in 6th Structure in Complexity Theory Conference, 1991). URL: http://dx.doi.org/10.1137/0221023.