Dynamics on Games: Simulation-Based Techniques and Applications to Routing

Authors Thomas Brihaye, Gilles Geeraerts, Marion Hallet, Benjamin Monmege , Bruno Quoitin



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2019.35.pdf
  • Filesize: 0.49 MB
  • 14 pages

Document Identifiers

Author Details

Thomas Brihaye
  • Université de Mons, Mons, Belgium
Gilles Geeraerts
  • Université libre Bruxelles, Brussels, Belgium
Marion Hallet
  • Université de Mons, Mons, Belgium, Université libre Bruxelles, Brussels, Belgium
Benjamin Monmege
  • Aix Marseille Univ, CNRS, LIS, Université de Toulon, France
Bruno Quoitin
  • Université de Mons, Mons, Belgium

Acknowledgements

We thank Timothy Griffin and Marco Chiesa for fruitful discussions.

Cite AsGet BibTex

Thomas Brihaye, Gilles Geeraerts, Marion Hallet, Benjamin Monmege, and Bruno Quoitin. Dynamics on Games: Simulation-Based Techniques and Applications to Routing. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 35:1-35:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.35

Abstract

We consider multi-player games played on graphs, in which the players aim at fulfilling their own (not necessarily antagonistic) objectives. In the spirit of evolutionary game theory, we suppose that the players have the right to repeatedly update their respective strategies (for instance, to improve the outcome w.r.t. the current strategy profile). This generates a dynamics in the game which may eventually stabilise to an equilibrium. The objective of the present paper is twofold. First, we aim at drawing a general framework to reason about the termination of such dynamics. In particular, we identify preorders on games (inspired from the classical notion of simulation between transitions systems, and from the notion of graph minor) which preserve termination of dynamics. Second, we show the applicability of the previously developed framework to interdomain routing problems.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algorithmic game theory
Keywords
  • games on graphs
  • dynamics
  • simulation
  • network

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. T. Brihaye, G Geeraerts, M. Hallet, Benjamin Monmege, and B. Quoitin. Dynamics on Games: Simulation-Based Techniques and Applications to Routing. CoRR, abs/1910.00094, 2019. URL: http://arxiv.org/abs/1910.00094.
  2. Thomas Brihaye, Gilles Geeraerts, Marion Hallet, and Stéphane Le Roux. Dynamics and Coalitions in Sequential Games. In Patricia Bouyer, Andrea Orlandini, and Pierluigi San Pietro, editors, Proceedings Eighth International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2017, Roma, Italy, 20-22 September 2017., volume 256 of EPTCS, pages 136-150, 2017. URL: https://doi.org/10.4204/EPTCS.256.10.
  3. Luca Cittadini, Giuseppe Di Battista, Massimo Rimondini, and Stefano Vissicchio. Wheel+Ring=Reel: the Impact of Route Filtering on the Stability of Policy Routing. IEEE/ACM Transaction on Networking, 19(4):1085-1096, August 2011. Google Scholar
  4. Matthew L. Daggitt, Alexander J. T. Gurney, and Timothy G. Griffin. Asynchronous convergence of policy-rich distributed Bellman-Ford routing protocols. In Sergey Gorinsky and János Tapolcai, editors, Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018, pages 103-116. ACM, 2018. URL: https://doi.org/10.1145/3230543.3230561.
  5. Alex Fabrikant and Christos H. Papadimitriou. The complexity of game dynamics: BGP oscillations, sink equilibria, and beyond. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 844-853. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347175.
  6. Lixin Gao and Jennifer Rexford. Stable internet routing without global coordination. IEEE/ACM Trans. Netw., 9(6):681-692, 2001. URL: https://doi.org/10.1109/90.974523.
  7. Timothy Griffin, F. Bruce Shepherd, and Gordon T. Wilfong. The stable paths problem and interdomain routing. IEEE/ACM Trans. Netw., 10(2):232-243, 2002. URL: http://portal.acm.org/citation.cfm?id=508332.
  8. Aaron D. Jaggard, Neil Lutz, Michael Schapira, and Rebecca N. Wright. Dynamics at the Boundary of Game Theory and Distributed Computing. ACM Trans. Economics and Comput., 5(3):15:1-15:20, 2017. URL: https://doi.org/10.1145/3107182.
  9. S. Le Roux and A. Pauly. A Semi-Potential for Finite and Infinite Sequential Games (Extended Abstract). In Domenico Cantone and Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games, Automata, Logics and Formal Verification, Catania, Italy, 14-16 September 2016, volume 226 of Electronic Proceedings in Theoretical Computer Science, pages 242-256. Open Publishing Association, 2016. URL: https://doi.org/10.4204/EPTCS.226.17.
  10. László Lovász. Graph minor theory. Bull. Amer. Math. Soc. (N.S.), 43(1):75-86, 2006. Google Scholar
  11. Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall, 1989. Google Scholar
  12. Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory. Cambridge University Press, New York, NY, USA, 2007. Google Scholar
  13. Martin J. Osborne and Ariel Rubinstein. A course in game theory. MIT Press, Cambridge, MA, 1994. Google Scholar
  14. A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL, pages 179-190. ACM Press, 1989. Google Scholar
  15. Rahul Sami, Michael Schapira, and Aviv Zohar. Searching for Stability in Interdomain Routing. In INFOCOM 2009. 28th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 19-25 April 2009, Rio de Janeiro, Brazil, pages 549-557. IEEE, 2009. URL: https://doi.org/10.1109/INFCOM.2009.5061961.
  16. Reinhard Selten. Spieltheoretische behandlung eines oligopolmodells mit nachfrägentragheit. Zeitschrift für die gesamte Staatswissenschaft, 12:201-324, 1965. Google Scholar
  17. Wolfgang Thomas. On the Synthesis of Strategies in Infinite Games. In STACS, pages 1-13, 1995. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail