Let G = (A ∪ B, E) be a bipartite graph on n vertices where every vertex ranks its neighbors in a strict order of preference. A matching M in G is popular if there is no matching N such that vertices that prefer N to M outnumber those that prefer M to N. Popular matchings always exist in G since every stable matching is popular. Thus it is easy to find a popular matching in G - however it is NP-hard to compute a min-cost popular matching in G when there is a cost function on the edge set; moreover it is NP-hard to approximate this to any multiplicative factor. An O^*(2ⁿ) algorithm to compute a min-cost popular matching in G follows from known results. Here we show: - an algorithm with running time O^*(2^{n/4}) ≈ O^*(1.19ⁿ) to compute a min-cost popular matching; - assume all edge costs are non-negative - then given ε > 0, a randomized algorithm with running time poly(n,1/(ε)) to compute a matching M such that cost(M) is at most twice the optimal cost and with high probability, the fraction of all matchings more popular than M is at most 1/2+ε.
@InProceedings{kavitha:LIPIcs.FSTTCS.2020.25, author = {Kavitha, Telikepalli}, title = {{Min-Cost Popular Matchings}}, booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)}, pages = {25:1--25:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-174-0}, ISSN = {1868-8969}, year = {2020}, volume = {182}, editor = {Saxena, Nitin and Simon, Sunil}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.25}, URN = {urn:nbn:de:0030-drops-132668}, doi = {10.4230/LIPIcs.FSTTCS.2020.25}, annote = {Keywords: Bipartite graphs, Stable matchings, Dual certificates} }
Feedback for Dagstuhl Publishing