Synchronization of Deterministic Visibly Push-Down Automata

Authors Henning Fernau , Petra Wolf



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2020.45.pdf
  • Filesize: 0.58 MB
  • 15 pages

Document Identifiers

Author Details

Henning Fernau
  • Universität Trier, Fachbereich IV, Informatikwissenschaften, Germany
Petra Wolf
  • Universität Trier, Fachbereich IV, Informatikwissenschaften, Germany

Cite As Get BibTex

Henning Fernau and Petra Wolf. Synchronization of Deterministic Visibly Push-Down Automata. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 45:1-45:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.FSTTCS.2020.45

Abstract

We generalize the concept of synchronizing words for finite automata, which map all states of the automata to the same state, to deterministic visibly push-down automata. Here, a synchronizing word w does not only map all states to the same state but also fulfills some conditions on the stack content of each run after reading w. We consider three types of these stack constraints: after reading w, the stack (1) is empty in each run, (2) contains the same sequence of stack symbols in each run, or (3) contains an arbitrary sequence which is independent of the other runs. We show that in contrast to general deterministic push-down automata, it is decidable for deterministic visibly push-down automata whether there exists a synchronizing word with each of these stack constraints, more precisely, the problems are in EXPTIME. Under the constraint (1), the problem is even in P. For the sub-classes of deterministic very visibly push-down automata, the problem is in P for all three types of constraints. We further study variants of the synchronization problem where the number of turns in the stack height behavior caused by a synchronizing word is restricted, as well as the problem of synchronizing a variant of a sequential transducer, which shows some visibly behavior, by a word that synchronizes the states and produces the same output on all runs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Grammars and context-free languages
  • Theory of computation → Automata extensions
  • Theory of computation → Transducers
Keywords
  • Synchronizing word
  • Deterministic visibly push-down automata
  • Deterministc finite atuomata
  • Finite-turn push-down automata
  • Sequential transducer
  • Computational complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Journal of Automata, Languages and Combinatorics - Essays on the Černý Conjecture. https://www.jalc.de/issues/2019/issue_24_2-4/content.html. Accessed: 10/1/2020.
  2. Rajeev Alur and P. Madhusudan. Visibly Pushdown Languages. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 202-211. ACM, 2004. Google Scholar
  3. Rajeev Alur and P. Madhusudan. Adding Nesting Structure to Words. J. ACM, 56(3):16:1-16:43, 2009. Google Scholar
  4. Marcelo Arenas, Pablo Barceló, and Leonid Libkin. Regular Languages of Nested Words: Fixed Points, Automata, and Synchronization. Theory of Computing Systems, 49(3):639-670, 2011. Google Scholar
  5. Parvaneh Babari, Karin Quaas, and Mahsa Shirmohammadi. Synchronizing Data Words for Register Automata. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. Google Scholar
  6. Vince Bárány, Christof Löding, and Olivier Serre. Regularity Problems for Visibly Pushdown Languages. In Bruno Durand and Wolfgang Thomas, editors, STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, volume 3884 of Lecture Notes in Computer Science, pages 420-431. Springer, 2006. Google Scholar
  7. Marie-Pierre Béal and Dominique Perrin. Synchronised Automata, page 213–240. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2016. Google Scholar
  8. Jean Berstel. Transductions and Context-Free Languages, volume 38 of Teubner Studienbücher: Informatik. Teubner, 1979. Google Scholar
  9. Benedikt Bollig. One-Counter Automata with Counter Observability. In Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen, editors, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016, Proceedings, volume 65 of LIPIcs, pages 20:1-20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. Google Scholar
  10. Olivier Carton. The Growth Ratio of Synchronous Rational Relations is Unique. Theoretical Computer Science, 376(1-2):52-59, 2007. Google Scholar
  11. Didier Caucal. Synchronization of Pushdown Automata. In Oscar H. Ibarra and Zhe Dang, editors, Developments in Language Theory, 10th International Conference, DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceedings, volume 4036 of Lecture Notes in Computer Science, pages 120-132. Springer, 2006. Google Scholar
  12. Ján Černý. Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fyzikalny Časopis Slovensk, 14(3):208-215, 1964. Google Scholar
  13. Ján Cerný. A Note on Homogeneous Experiments with Finite Automata. Journal of Automata, Languages and Combinatorics, 24(2-4):123-132, 2019. Google Scholar
  14. Dmitry Chistikov, Pavel Martyugin, and Mahsa Shirmohammadi. Synchronizing Automata over Nested Words. Journal of Automata, Languages and Combinatorics, 24(2-4):219-251, 2019. Google Scholar
  15. Laurent Doyen, Line Juhl, Kim Guldstrand Larsen, Nicolas Markey, and Mahsa Shirmohammadi. Synchronizing Words for Weighted and Timed Automata. In 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India, pages 121-132, 2014. Google Scholar
  16. David Eppstein. Reset Sequences for Monotonic Automata. SIAM Journal on Computing, 19(3):500-510, 1990. Google Scholar
  17. Henning Fernau and Petra Wolf. Synchronization of Deterministic Visibly Push-Down Automata. CoRR, abs/2005.01374, 2020. URL: http://arxiv.org/abs/2005.01374.
  18. Henning Fernau, Petra Wolf, and Tomoyuki Yamakami. Synchronizing Deterministic Push-Down Automata Can Be Really Hard. CoRR, abs/2005.01381, 2020. An extended abstract is accepted at MFCS 2020. URL: http://arxiv.org/abs/2005.01381.
  19. Seymour Ginsburg. The mathematical Theory of Context-Free Languages. McGraw-Hill, 1966. Google Scholar
  20. Seymour Ginsburg and Edwin H Spanier. Finite-Turn Pushdown Automata. SIAM Journal on Control, 4(3):429-453, 1966. Google Scholar
  21. Michael Hahn, Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly Counter Languages and the Structure of NC^1. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, volume 9235 of Lecture Notes in Computer Science, pages 384-394. Springer, 2015. Google Scholar
  22. Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. On Distinguishing NC^1 and NL. In Igor Potapov, editor, Developments in Language Theory - 19th International Conference, DLT 2015, volume 9168 of Lecture Notes in Computer Science, pages 340-351. Springer, 2015. Google Scholar
  23. Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly Counter Languages and Constant Depth Circuits. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, volume 30 of LIPIcs, pages 594-607. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. Google Scholar
  24. Michael Ludwig. Tree-Structured Problems and Parallel Computation. PhD thesis, University of Tübingen, Germany, 2019. URL: https://publikationen.uni-tuebingen.de/xmlui/handle/10900/85960/.
  25. Pavel Martyugin. Computational Complexity of Certain Problems Related to Carefully Synchronizing Words for Partial Automata and Directing Words for Nondeterministic Automata. Theory of Computing Systems, 54(2):293-304, 2014. Google Scholar
  26. Pavel V. Martyugin. Synchronization of Automata with One Undefined or Ambiguous Transition. In Nelma Moreira and Rogério Reis, editors, Implementation and Application of Automata - 17th International Conference, CIAA 2012, Porto, Portugal, July 17-20, 2012. Proceedings, volume 7381 of Lecture Notes in Computer Science, pages 278-288. Springer, 2012. Google Scholar
  27. Kurt Mehlhorn. Pebbling Moutain Ranges and its Application of DCFL-Recognition. In J. W. de Bakker and Jan van Leeuwen, editors, Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings, volume 85 of Lecture Notes in Computer Science, pages 422-435. Springer, 1980. Google Scholar
  28. Eitatsu Mikami and Tomoyuki Yamakami. Synchronizing Pushdown Automata and Reset Words, 2020. An article appeared in Japanese as Technical Report of The Institute of Electonics, Information and Communication Engineers, COMP2019-54(2020-03), pp. 57-63. Google Scholar
  29. Maurice Nivat. Transductions des langages de Chomsky. Ann. Inst. Fourier, Grenoble, 18:339-456, 1968. Google Scholar
  30. Alexander Okhotin and Kai Salomaa. Complexity of Input-Driven Pushdown Automata. SIGACT News, 45(2):47-67, 2014. Google Scholar
  31. I. K. Rystsov. On Minimizing the Length of Synchronizing Words for Finite Automata. In Theory of Designing of Computing Systems, pages 75-82. Institute of Cybernetics of Ukrainian Acad. Sci., 1980. (in Russian). Google Scholar
  32. I. K. Rystsov. Polynomial Complete Problems in Automata Theory. Information Processing Letters, 16(3):147-151, 1983. Google Scholar
  33. Jacques Sakarovitch. Eléments de Théorie des Automates. Vuibert informatique, 2003. Google Scholar
  34. Sven Sandberg. Homing and Synchronizing Sequences. In Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors, Model-Based Testing of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, pages 5-33. Springer, 2005. Google Scholar
  35. Walter J. Savitch. Relationships Between Nondeterministic and Deterministic Tape Complexities. Journal of Computer and System Sciences, 4(2):177-192, 1970. Google Scholar
  36. Mahsa Shirmohammadi. Qualitative Analysis of Synchronizing Probabilistic Systems. (Analyse qualitative des systèmes probabilistes synchronisants). PhD thesis, École normale supérieure de Cachan, France, 2014. URL: https://tel.archives-ouvertes.fr/tel-01153942.
  37. Yaroslav Shitov. An Improvement to a Recent Upper Bound for Synchronizing Words of Finite Automata. Journal of Automata, Languages and Combinatorics, 24(2-4):367-373, 2019. Google Scholar
  38. Jirí Srba. Beyond Language Equivalence on Visibly Pushdown Automata. Logical Methods in Computer Science, 5(1), 2009. Google Scholar
  39. Peter H. Starke. Eine Bemerkung über homogene Experimente. Elektronische Informationsverarbeitung und Kybernetik (J. Inf. Process. Cybern.), 2(4):257-259, 1966. Google Scholar
  40. Peter H. Starke. A Remark About Homogeneous Experiments. Journal of Automata, Languages and Combinatorics, 24(2-4):133-137, 2019. Google Scholar
  41. Marek Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 56:1-56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Google Scholar
  42. Leslie G. Valiant. Decision Procedures for Families of Deterministic Pushdown Automata. PhD thesis, University of Warwick, Coventry, UK, 1973. URL: http://wrap.warwick.ac.uk/34701/.
  43. Mikhail V. Volkov. Synchronizing Automata and the Černý Conjecture. In Carlos Martín-Vide, Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and Applications, Second International Conference, LATA, volume 5196 of LNCS, pages 11-27. Springer, 2008. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail