Creative Commons Attribution 3.0 Unported license
We consider temporal graphs with discrete time labels and investigate the size and the approximability of minimum temporally connected spanning subgraphs. We present a family of minimally connected temporal graphs with n vertices and Omega(n^2) edges, thus resolving an open question of (Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity certificates. Next, we consider the problem of computing a minimum weight subset of temporal edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved in polynomial time if the underlying graph has bounded treewidth. We also show that the best approximation ratio for MTC is at least O(2^{log^{1-epsilon}(n)} and at most O(min{n^{1+epsilon},(Delta*M)^{2/3+epsilon}), for any constant epsilon > 0, where M is the number of temporal edges and Delta is the maximum degree of the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard and that MTC is efficiently solvable in trees and 2-approximable in cycles.
@InProceedings{axiotis_et_al:LIPIcs.ICALP.2016.149,
author = {Axiotis, Kyriakos and Fotakis, Dimitris},
title = {{On the Size and the Approximability of Minimum Temporally Connected Subgraphs}},
booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
pages = {149:1--149:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-013-2},
ISSN = {1868-8969},
year = {2016},
volume = {55},
editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.149},
URN = {urn:nbn:de:0030-drops-62936},
doi = {10.4230/LIPIcs.ICALP.2016.149},
annote = {Keywords: Temporal Graphs, Temporal Connectivity, Approximation Algorithms}
}