The sign-rank of a matrix A with entries in {-1, +1} is the least rank of a real matrix B with A_{ij}*B_{ij} > 0 for all i, j. Razborov and Sherstov (2008) gave the first exponential lower bounds on the sign-rank of a function in AC^0, answering an old question of Babai, Frankl, and Simon (1986). Specifically, they exhibited a matrix A = [F(x,y)]_{x,y} for a specific function F:{-1,1}^n*{-1,1}^n -> {-1,1} in AC^0, such that A has sign-rank exp(Omega(n^{1/3}). We prove a generalization of Razborov and Sherstov’s result, yielding exponential sign-rank lower bounds for a non-trivial class of functions (that includes the function used by Razborov and Sherstov). As a corollary of our general result, we improve Razborov and Sherstov's lower bound on the sign-rank of AC^0 from exp(Omega(n^{1/3})) to exp(~Omega(n^{2/5})). We also describe several applications to communication complexity, learning theory, and circuit complexity.
@InProceedings{bun_et_al:LIPIcs.ICALP.2016.37, author = {Bun, Mark and Thaler, Justin}, title = {{Improved Bounds on the Sign-Rank of AC^0}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {37:1--37:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.37}, URN = {urn:nbn:de:0030-drops-63173}, doi = {10.4230/LIPIcs.ICALP.2016.37}, annote = {Keywords: Sign-rank, circuit complexity, communication complexity, constant-depth circuits} }
Feedback for Dagstuhl Publishing