Document Open Access Logo

Simple Average-Case Lower Bounds for Approximate Near-Neighbor from Isoperimetric Inequalities

Author Yitong Yin

Thumbnail PDF


  • Filesize: 495 kB
  • 13 pages

Document Identifiers

Author Details

Yitong Yin

Cite AsGet BibTex

Yitong Yin. Simple Average-Case Lower Bounds for Approximate Near-Neighbor from Isoperimetric Inequalities. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 84:1-84:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


We prove an Omega(d/log(sw/nd)) lower bound for the average-case cell-probe complexity of deterministic or Las Vegas randomized algorithms solving approximate near-neighbor (ANN) problem in ddimensional Hamming space in the cell-probe model with w-bit cells, using a table of size s. This lower bound matches the highest known worst-case cell-probe lower bounds for any static data structure problems. This average-case cell-probe lower bound is proved in a general framework which relates the cell-probe complexity of ANN to isoperimetric inequalities in the underlying metric space. A tighter connection between ANN lower bounds and isoperimetric inequalities is established by a stronger richness lemma proved by cell-sampling techniques.
  • nearest neighbor search
  • approximate near-neighbor
  • cell-probe model
  • isoperimetric inequality


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail