Distributed Monitoring of Network Properties: The Power of Hybrid Networks

Authors Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, Christian Sohler



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2017.137.pdf
  • Filesize: 493 kB
  • 15 pages

Document Identifiers

Author Details

Robert Gmyr
Kristian Hinnenthal
Christian Scheideler
Christian Sohler

Cite AsGet BibTex

Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler. Distributed Monitoring of Network Properties: The Power of Hybrid Networks. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 137:1-137:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ICALP.2017.137

Abstract

We initiate the study of network monitoring algorithms in a class of hybrid networks in which the nodes are connected by an external network and an internal network (as a short form for externally and internally controlled network). While the external network lies outside of the control of the nodes (or in our case, the monitoring protocol running in them) and might be exposed to continuous changes, the internal network is fully under the control of the nodes. As an example, consider a group of users with mobile devices having access to the cell phone infrastructure. While the network formed by the WiFi connections of the devices is an external network (as its structure is not necessarily under the control of the monitoring protocol), the connections between the devices via the cell phone infrastructure represent an internal network (as it can be controlled by the monitoring protocol). Our goal is to continuously monitor properties of the external network with the help of the internal network. We present scalable distributed algorithms that efficiently monitor the number of edges, the average node degree, the clustering coefficient, the bipartiteness, and the weight of a minimum spanning tree. Their performance bounds demonstrate that monitoring the external network state with the help of an internal network can be done much more efficiently than just using the external network, as is usually done in the literature.
Keywords
  • Network Monitoring
  • Hybrid Networks
  • Overlay Networks

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sebastian Abshoff and Friedhelm Meyer auf der Heide. Continuous aggregation in dynamic ad-hoc networks. In Magnús M. Halldórsson, editor, Structural Information and Communication Complexity - 21st International Colloquium, SIROCCO 2014, Takayama, Japan, July 23-25, 2014. Proceedings, volume 8576 of Lecture Notes in Computer Science, pages 194-209. Springer, 2014. URL: http://dx.doi.org/10.1007/978-3-319-09620-9_16.
  2. Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast construction of overlay networks. In Proceedings of the 17th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA'05, page 145, 2005. URL: http://dx.doi.org/10.1145/1073970.1073991.
  3. Mikhail Atallah and Uzi Vishkin. Finding euler tours in parallel. Journal of Computer and System Sciences, 29(3):330-337, 1984. URL: http://dx.doi.org/10.1016/0022-0000(84)90003-5.
  4. Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and Advanced Topics. John Wiley and Sons, Inc., 2nd edition, 2004. Google Scholar
  5. John Augustine, Gopal Pandurangan, and Peter Robinson. Distributed algorithmic foundations of dynamic networks. SIGACT News, 47(1):69-98, 2016. URL: http://dx.doi.org/10.1145/2902945.2902959.
  6. Petra Berenbrink, Bruce Krayenhoff, and Frederik Mallmann-Trenn. Estimating the number of connected components in sublinear time. Information Processing Letter, 114(11):639-642, 2014. URL: http://dx.doi.org/10.1016/j.ipl.2014.05.008.
  7. Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC'15, pages 143-152, 2015. URL: http://dx.doi.org/10.1145/2767386.2767414.
  8. Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning tree weight in sublinear time. SIAM J. Comput., 34(6):1370-1379, 2005. Google Scholar
  9. Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt Rubinfeld, and Christian Sohler. Approximating the weight of the euclidean minimum spanning tree in sublinear time. SIAM J. Comput., 35(1):91-109, 2005. URL: http://dx.doi.org/10.1137/S0097539703435297.
  10. Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning trees in sublinear time. SIAM J. Comput., 39(3):904-922, 2009. URL: http://dx.doi.org/10.1137/060672121.
  11. Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC'14, pages 367-376, 2014. URL: http://dx.doi.org/10.1145/2611462.2611493.
  12. Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, Zhifeng Sun, and Emanuele Viola. On the complexity of information spreading in dynamic networks. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 717-736. SIAM, 2013. URL: http://dx.doi.org/10.1137/1.9781611973105.52.
  13. Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the distributed minimum spanning tree problem. In Proceedings of the 36th ACM Symposium on Theory of Computing, STOC'04, pages 331-340, 2004. URL: http://dx.doi.org/10.1145/1007352.1007407.
  14. Michael Elkin. A faster distributed protocol for constructing a minimum spanning tree. Journal of Computer and System Sciences, 72(8):1282-1308, 2006. URL: http://dx.doi.org/10.1016/j.jcss.2006.07.002.
  15. Bernhard Haeupler and David Karger. Faster information dissemination in dynamic networks via network coding. In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC'11, pages 381-390, 2011. URL: http://dx.doi.org/10.1145/1993806.1993885.
  16. Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for finding spanning forests. Journal of Algorithms, 39(1):1-46, 2001. URL: http://dx.doi.org/10.1006/jagm.2000.1146.
  17. James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh, and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connectivity and mst. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC'15, pages 91-100, 2015. URL: http://dx.doi.org/10.1145/2767386.2767434.
  18. Joseph JaJa. An Introduction to Parallel Algorithms, volume 17. Addison Wesley, 1992. Google Scholar
  19. Donald B. Johnson and Panagiotis Metaxas. A parallel algorithm for computing minimum spanning trees. Journal of Algorithms, 19(3):383-401, 1995. URL: http://dx.doi.org/10.1006/jagm.1995.1043.
  20. Jon Kleinberg and Eva Tardos. Algorithm Design: Pearson New International Edition. Pearson Education Limited, 2013. Google Scholar
  21. Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1):48-50, 1956. URL: http://dx.doi.org/10.2307/2033241.
  22. Fabian Kuhn, Thomas Locher, and Stefan Schmid. Distributed computation of the mode. In Proceedings of the 27th ACM Symposium on Principles of Distributed Computing, PODC'08, pages 15-24, 2008. URL: http://dx.doi.org/10.1145/1400751.1400756.
  23. Fabian Kuhn, Thomas Locher, and Roger Wattenhofer. Tight bounds for distributed selection. In Proceedings of the 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA'07, pages 145-153, 2007. URL: http://dx.doi.org/10.1145/1248377.1248401.
  24. Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC'10, pages 513-522, 2010. URL: http://dx.doi.org/10.1145/1806689.1806760.
  25. Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In Symposium on Principles of Distributed Computing, PODC'13, pages 42-50, 2013. URL: http://dx.doi.org/10.1145/2484239.2501983.
  26. Thomas Locher. Foundations of aggregation and synchronization in distributed systems. PhD thesis, ETH Zürich, 2009. URL: http://dx.doi.org/10.3929/ethz-a-005799819.
  27. Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning tree construction in O(log log n) communication rounds. SIAM J. Comput., 35(1):120-131, 2005. URL: http://dx.doi.org/10.1137/S0097539704441848.
  28. Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed stable network construction. In ACM Symposium on Principles of Distributed Computing, PODC'14, pages 76-85, 2014. URL: http://dx.doi.org/10.1145/2611462.2611466.
  29. Mark E. J. Newman. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2):404-409, 2001. URL: http://dx.doi.org/10.1073/pnas.98.2.404.
  30. Mark E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64(2):26118, jul 2001. URL: http://dx.doi.org/10.1103/PhysRevE.64.026118.
  31. Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random graph models of social networks. Proceedings of the National Academy of Sciences, 99(suppl 1):2566-2572, 2002. URL: http://dx.doi.org/10.1073/pnas.012582999.
  32. Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast distributed algorithms for connectivity and mst in large graphs. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA'16, pages 429-438, 2016. URL: http://dx.doi.org/10.1145/2935764.2935785.
  33. David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of distributed mst construction. In 40th Annual Symposium on Foundations of Computer Science, FOCS'99, pages 253-261, 1999. URL: http://dx.doi.org/10.1109/SFFCS.1999.814597.
  34. Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In Middleware 2001, IFIP/ACM International Conference on Distributed Systems Platforms, pages 329-350, 2001. URL: http://dx.doi.org/10.1007/3-540-45518-3_18.
  35. Robert E. Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm. SIAM J. Comput., 14(4):862-874, 1985. URL: http://dx.doi.org/10.1137/0214061.
  36. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world' networks. Nature, 393(6684):440-442, 1998. URL: http://dx.doi.org/10.1038/30918.
  37. Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John Kubiatowicz. Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications, 22(1):41-53, 2004. URL: http://dx.doi.org/10.1109/JSAC.2003.818784.