Document

# Union of Hypercubes and 3D Minkowski Sums with Random Sizes

## File

LIPIcs.ICALP.2018.10.pdf
• Filesize: 0.51 MB
• 15 pages

## Cite As

Pankaj K. Agarwal, Haim Kaplan, and Micha Sharir. Union of Hypercubes and 3D Minkowski Sums with Random Sizes. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ICALP.2018.10

## Abstract

Let T={triangle_1,...,triangle_n} be a set of of n pairwise-disjoint triangles in R^3, and let B be a convex polytope in R^3 with a constant number of faces. For each i, let C_i = triangle_i oplus r_i B denote the Minkowski sum of triangle_i with a copy of B scaled by r_i>0. We show that if the scaling factors r_1, ..., r_n are chosen randomly then the expected complexity of the union of C_1, ..., C_n is O(n^{2+epsilon), for any epsilon > 0; the constant of proportionality depends on epsilon and the complexity of B. The worst-case bound can be Theta(n^3). We also consider a special case of this problem in which T is a set of points in R^3 and B is a unit cube in R^3, i.e., each C_i is a cube of side-length 2r_i. We show that if the scaling factors are chosen randomly then the expected complexity of the union of the cubes is O(n log^2 n), and it improves to O(n log n) if the scaling factors are chosen randomly from a "well-behaved" probability density function (pdf). We also extend the latter results to higher dimensions. For any fixed odd value of d, we show that the expected complexity of the union of the hypercubes is O(n^floor[d/2] log n) and the bound improves to O(n^floor[d/2]) if the scaling factors are chosen from a "well-behaved" pdf. The worst-case bounds are Theta(n^2) in R^3, and Theta(n^{ceil[d/2]}) in higher dimensions.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Computational geometry
• Theory of computation → Generating random combinatorial structures
##### Keywords
• Computational geometry
• Minkowski sums
• Axis-parallel cubes
• Union of geometric objects
• Objects with random sizes

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. P. K. Agarwal, A. Efrat, S. K. Ganjugunte, D. Hay, S. Sankararaman, and G. Zussman. The resilience of WDM networks to probabilistic geographical failures. IEEE/ACM Trans. on Netw., 21(5):1525-1538, 2013.
2. P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir. Union of random minkowski sums and network vulnerability analysis. Discrete Comput. Geom., 52(3):551-582, 2014.
3. P.K. Agarwal and M. Sharir. Pipes, cigars, and kreplach: the union of minkowski sums in three dimensions. Discrete Comput. Geom., 24(4):645-657, Jan 2000.
4. B. Aronov, A. Efrat, V. Koltun, and M. Sharir. On the union of κ-round objects in three and four dimensions. Discrete Comput. Geom., 36(4):511-526, 2006.
5. B. Aronov and M. Sharir. Triangles in space or building (and analyzing) castles in the air. Combinatorica, 10(2):137-173, 1990.
6. B. Aronov and M. Sharir. Castles in the air revisited. Discrete Comput. Geom., 12(2):119-150, 1994.
7. B. Aronov and M. Sharir. On translational motion planning of a convex polyhedron in 3-space. SIAM J. Comput., 26(6):1785-1803, 1997.
8. B. Aronov, M. Sharir, and B. Tagansky. The union of convex polyhedra in three dimensions. SIAM J. Comput., 26(6):1670-1688, 1997.
9. F. Aurenhammer, R. Klein, and D. T. Lee. Voronoi diagrams and Delaunay triangulations. World Scientific, 2013.
10. J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec. Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discrete Comput. Geom., 19(4):485-519, 1998.
11. H.-C. Chang, S. Har-Peled, and B. Raichel. From proximity to utility: A voronoi partition of pareto optima. Discrete Comput. Geom., 56(3):631-656, 2016.
12. E. Ezra. On the union of cylinders in three dimensions. Discrete Comput. Geom., 45(1):45-64, 2011.
13. E. Ezra and M. Sharir. On the union of fat tetrahedra in three dimensions. J. ACM, 57(1):2:1-2:23, 2009.
14. M. J. Golin and H.-S. Na. On the average complexity of 3d-voronoi diagrams of random points on convex polytopes. Comput. Geom: Theory Appls., 25(3):197-231, 2003.
15. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.
16. S. Har-Peled and B. Raichel. On the complexity of randomly weighted multiplicative voronoi diagrams. Discrete Comput. Geom., 53(3):547-568, 2015.
17. J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, Berlin, Heidelberg, 2002.
18. J. Pach P. K. Agarwal and M. Sharir. State of the union (of geometric objects). In J. Pach J. Goodman and R. Pollack, editors, Surveys on Discrete and Computational Geometry, pages 9-48. Amer. Math. Soc., Providence, RI, 2008.
19. J. Pach, I. Safruti, and M. Sharir. The union of congruent cubes in three dimensions. Discrete Comput. Geom., 30(1):133-160, 2003.
20. R. Schneider and J. A. Wieacker. Integral geometry. In P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry, volume B, pages 1349-1390. North-Holland, Amsterdam, 1993.
21. W. Weil and J. A. Wieacker. Stochastic geometry. In P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry, volume B, pages 1393-1438. North-Holland, Amsterdam, 1993.
X

Feedback for Dagstuhl Publishing