In this paper, we present improved algorithms for the (Delta+1) (vertex) coloring problem in the Congested Clique model of distributed computing. In this model, the input is a graph on n nodes, initially each node knows only its incident edges, and per round each two nodes can exchange O(log n) bits of information. Our key result is a randomized (Delta+1) vertex coloring algorithm that works in O(log log Delta * log^* Delta)-rounds. This is achieved by combining the recent breakthrough result of [Chang-Li-Pettie, STOC'18] in the {LOCAL} model and a degree reduction technique. We also get the following results with high probability: (1) (Delta+1)-coloring for Delta=O((n/log n)^{1-epsilon}) for any epsilon in (0,1), within O(log(1/epsilon)log^* Delta) rounds, and (2) (Delta+Delta^{1/2+o(1)})-coloring within O(log^* Delta) rounds. Turning to deterministic algorithms, we show a (Delta+1)-coloring algorithm that works in O(log Delta) rounds. Our new bounds provide exponential improvements over the state of the art.
@InProceedings{parter:LIPIcs.ICALP.2018.160, author = {Parter, Merav}, title = {{(Delta+1) Coloring in the Congested Clique Model}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {160:1--160:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.160}, URN = {urn:nbn:de:0030-drops-91640}, doi = {10.4230/LIPIcs.ICALP.2018.160}, annote = {Keywords: Distributed Graph Algorithms, Coloring, Congested Clique} }
Feedback for Dagstuhl Publishing