LIPIcs.ICALP.2018.54.pdf
- Filesize: 0.52 MB
- 16 pages
Derandomization of blackbox identity testing reduces to extremely special circuit models. After a line of work, it is known that focusing on circuits with constant-depth and constantly many variables is enough (Agrawal,Ghosh,Saxena, STOC'18) to get to general hitting-sets and circuit lower bounds. This inspires us to study circuits with few variables, eg. logarithmic in the size s. We give the first poly(s)-time blackbox identity test for n=O(log s) variate size-s circuits that have poly(s)-dimensional partial derivative space; eg. depth-3 diagonal circuits (or Sigma wedge Sigma^n). The former model is well-studied (Nisan,Wigderson, FOCS'95) but no poly(s2^n)-time identity test was known before us. We introduce the concept of cone-closed basis isolation and prove its usefulness in studying log-variate circuits. It subsumes the previous notions of rank-concentration studied extensively in the context of ROABP models.
Feedback for Dagstuhl Publishing