We present a geometric approach towards derandomizing the {Isolation Lemma} by Mulmuley, Vazirani, and Vazirani. In particular, our approach produces a quasi-polynomial family of weights, where each weight is an integer and quasi-polynomially bounded, that can isolate a vertex in any 0/1 polytope for which each face lies in an affine space defined by a totally unimodular matrix. This includes the polytopes given by totally unimodular constraints and generalizes the recent derandomization of the Isolation Lemma for {bipartite perfect matching} and {matroid intersection}. We prove our result by associating a {lattice} to each face of the polytope and showing that if there is a totally unimodular kernel matrix for this lattice, then the number of vectors of length within 3/2 of the shortest vector in it is polynomially bounded. The proof of this latter geometric fact is combinatorial and follows from a polynomial bound on the number of circuits of size within 3/2 of the shortest circuit in a regular matroid. This is the technical core of the paper and relies on a variant of Seymour's decomposition theorem for regular matroids. It generalizes an influential result by Karger on the number of minimum cuts in a graph to regular matroids.
@InProceedings{gurjar_et_al:LIPIcs.ICALP.2018.74, author = {Gurjar, Rohit and Thierauf, Thomas and Vishnoi, Nisheeth K.}, title = {{Isolating a Vertex via Lattices: Polytopes with Totally Unimodular Faces}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {74:1--74:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.74}, URN = {urn:nbn:de:0030-drops-90782}, doi = {10.4230/LIPIcs.ICALP.2018.74}, annote = {Keywords: Derandomization, Isolation Lemma, Total unimodularity, Near-shortest vectors in Lattices, Regular matroids} }
Feedback for Dagstuhl Publishing