We study algorithms and combinatorial complexity bounds for stable-matching Voronoi diagrams, where a set, S, of n point sites in the plane determines a stable matching between the points in R^2 and the sites in S such that (i) the points prefer sites closer to them and sites prefer points closer to them, and (ii) each site has a quota indicating the area of the set of points that can be matched to it. Thus, a stable-matching Voronoi diagram is a solution to the classic post office problem with the added (realistic) constraint that each post office has a limit on the size of its jurisdiction. Previous work provided existence and uniqueness proofs, but did not analyze its combinatorial or algorithmic complexity. We show that a stable-matching Voronoi diagram of n sites has O(n^{2+epsilon}) faces and edges, for any epsilon>0, and show that this bound is almost tight by giving a family of diagrams with Theta(n^2) faces and edges. We also provide a discrete algorithm for constructing it in O(n^3+n^2f(n)) time, where f(n) is the runtime of a geometric primitive that can be performed in the real-RAM model or can be approximated numerically. This is necessary, as the diagram cannot be computed exactly in an algebraic model of computation.
@InProceedings{barequet_et_al:LIPIcs.ICALP.2018.89, author = {Barequet, Gill and Eppstein, David and Goodrich, Michael T. and Mamano, Nil}, title = {{Stable-Matching Voronoi Diagrams: Combinatorial Complexity and Algorithms}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {89:1--89:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.89}, URN = {urn:nbn:de:0030-drops-90937}, doi = {10.4230/LIPIcs.ICALP.2018.89}, annote = {Keywords: Voronoi diagram, stable matching, combinatorial complexity, lower bounds} }
Feedback for Dagstuhl Publishing