We consider the matroid coflow scheduling problem, where each job is comprised of a set of flows and the family of sets that can be scheduled at any time form a matroid. Our main result is a polynomial-time algorithm that yields a 2-approximation for the objective of minimizing the weighted completion time. This result is tight assuming P != NP. As a by-product we also obtain the first (2+epsilon)-approximation algorithm for the preemptive concurrent open shop scheduling problem.
@InProceedings{im_et_al:LIPIcs.ICALP.2019.145, author = {Im, Sungjin and Moseley, Benjamin and Pruhs, Kirk and Purohit, Manish}, title = {{Matroid Coflow Scheduling}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {145:1--145:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.145}, URN = {urn:nbn:de:0030-drops-107213}, doi = {10.4230/LIPIcs.ICALP.2019.145}, annote = {Keywords: Coflow Scheduling, Concurrent Open Shop, Matroid Scheduling} }
Feedback for Dagstuhl Publishing