We consider the problem of finding solutions to systems of polynomial equations over a finite field. Lokshtanov et al. [SODA'17] recently obtained the first worst-case algorithms that beat exhaustive search for this problem. In particular for degree-d equations modulo two in n variables, they gave an O^*(2^{(1-1/(5d))n}) time algorithm, and for the special case d=2 they gave an O^*(2^{0.876n}) time algorithm. We modify their approach in a way that improves these running times to O^*(2^{(1-1/(2.7d))n}) and O^*{2^{0.804n}), respectively. In particular, our latter bound - that holds for all systems of quadratic equations modulo 2 - comes close to the O^*(2^{0.792n}) expected time bound of an algorithm empirically found to hold for random equation systems in Bardet et al. [J. Complexity, 2013]. Our improvement involves three observations: 1) The Valiant-Vazirani lemma can be used to reduce the solution-finding problem to that of counting solutions modulo 2. 2) The monomials in the probabilistic polynomials used in this solution-counting modulo 2 have a special form that we exploit to obtain better bounds on their number than in Lokshtanov et al. [SODA'17]. 3) The problem of solution-counting modulo 2 can be "embedded" in a smaller instance of the original problem, which enables us to apply the algorithm as a subroutine to itself.
@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2019.26, author = {Bj\"{o}rklund, Andreas and Kaski, Petteri and Williams, Ryan}, title = {{Solving Systems of Polynomial Equations over GF(2) by a Parity-Counting Self-Reduction}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {26:1--26:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.26}, URN = {urn:nbn:de:0030-drops-106023}, doi = {10.4230/LIPIcs.ICALP.2019.26}, annote = {Keywords: equation systems, polynomial method} }
Feedback for Dagstuhl Publishing